首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified the following events during the late stage in the mother cell in Bacillus subtilis: spore detachment from the polar site of the mother cell, membrane rupture, cell wall collapse, and release of the free spore. The membrane rupture was followed by mother cell lysis. Moreover, we found that NucB, an extracellular nuclease, is involved in DNA degradation after mother cell lysis.  相似文献   

2.
NK cell-mediated cytotoxicity results from membrane interactions between NK effector and target cells. The role of membrane fluidity in these events is not known. The present study was undertaken to investigate the effect of changes in membrane lipid fluidity of NK effector and NK-sensitive target cells on the lytic pathway of NK cell-mediated cytotoxicity. Fluidity was modulated by various lipids and measured by fluorescence polarization. NK effector cells treated with phosphatidylcholine complexed with polyvinylpyrrolidone (PVP) and bovine serum albumin (BSA) showed increased membrane fluidity. This fluidization of the effector cell membrane resulted in a significant inhibition of cytotoxic activity in the 51Cr-release assay. Single cell analysis revealed that the inhibition was due to a decrease in the frequency of NK target conjugates and reduced killing of conjugated targets. Rigidification of the NK effector cell membranes by treatment with cholesteryl hemisuccinate complexed with PVP and BSA also resulted in inhibition of cytotoxicity. This inhibition was post binding, because binding was increased and lysis was abrogated. Fluidization of K562 target cell membranes caused a slight but insignificant increase in their lysis by NK cells without affecting the binding step. On the other hand, rigidification of K562 membranes decreased the sensitivity of these target cells to lysis. Single cell analysis revealed that this inhibition of NK lysis is post binding, because the frequency of killers was significantly decreased. It was also shown that membrane rigidification of target cells that were programmed for lysis during the lethal hit stage and subsequently separated from effector cells, rendered the programmed cells resistant to killing during the killer cell-independent lysis step. These results demonstrate that fluidization or rigidification of the plasma membrane of either effector or target cells affect different stages of the NK cell-mediated cytolytic events.  相似文献   

3.
Lysis Inhibition in Escherichia coli Infected with Bacteriophage T4   总被引:10,自引:5,他引:5       下载免费PDF全文
A technique of continuous filtration of T4-infected Escherichia coli has been devised to study the phenomenon of lysis inhibition. Studies using this technique revealed that the length of the lysis delay caused by superinfection can attain only certain discrete values, which for low average multiplicity of superinfection is thought to be a reflection of the actual number of superinfecting particles per cell. The time interval between primary and superinfection had little effect on the length of lysis delay. With increasing rate of superinfection, the length of lysis delay decreased. In superinfected cells, the concentration of endolysin exceeded the final concentration in nonsuperinfected cells. Superinfection of a lysing culture induced lysis inhibition immediately. Temperature-shift experiments, with cells primarily infected by a temperature-sensitive endolysin mutant, revealed that after the normal latent period superinfection was unable to induce lysis inhibition. Amber-restrictive cells, which were primarily infected by an endolysin negative amber mutant, released adenosine triphosphate (ATP) at the end of the normal latent period although lysis did not occur. Superinfection reduced the loss of ATP markedly. The hypothetical role of the cytoplasmic membrane in lysis inhibition is discussed.  相似文献   

4.
It is known that there are 100 Å-wide circular structures associated with the erythrocyte membrane in immune lysis. To determine whether these structures were functional holes extending through the membrane, freeze-etch electron microscopy was carried out. Sheep erythrocytes incubated with either rabbit complement or rabbit antibody (anti-sheep erythrocyte antibody) did not hemolyze and did not reveal any abnormalities in freeze-etch or negative-stain electron microscopy. Erythrocytes incubated with both complement and antibody revealed rings on the extracellular surface (etch face) of the cell membrane. Allowing for the 30 Å-thick Pt/C replica, the dimensions of the surface rings were similar to those seen by negative staining. The ring's central depression was level with the plane of the membrane; some rings were closed circles, others were crescent shaped. The cleavage face of the extracellular leaflet revealed globule aggregates, each aggregate appearing to be composed of about four fused globules. The cleavage face of the cytoplasmic leaflet was normal. When immune lysis was carried out in the presence of ferritin, ferritin was subsequently detected in all lysed erythrocytes. If ferritin was added after immune lysis was complete, only 15% of the cells were permeated by ferritin, indicating that transient openings exist in the cell membrane during immune lysis. No abnormal structures were detected when C6-deficient rabbit serum was used as a source of complement. It is concluded that antibody and complement produce surface rings, prelytic leakage of K+, colloid osmotic swelling, membrane disruption, and membrane resealing; the surface rings persist after these events.  相似文献   

5.
The plaque enlargement of wild-type T4 bacteriophage observed when assayed in the presence of low concentrations of mitomycin C or after exposure to very low doses of ultraviolet light was studied by using solid as well as liquid culture media. It was found that the filamentous cell formed by the treatment with the agents is responsible for the phenomenon. The filamentous cell was also shown to be characterized not only by the loss of capacity of lysis inhibition but also by a shortening of the latent period. No difference in cellular rigidity could be seen between the filamentous cell and normal cell as far as the analysis from the outside of the cell was concerned, whereas the former cell was shown to be more readily susceptible to phage-induced lysozyme from the inside of the cell. A possible change in the membrane of the filamentous cell and a possible mechanism for lysis inhibition are discussed.  相似文献   

6.
The coexpression of human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins and receptors leads to the lysis of single cells by a process that is dependent upon membrane fusion. This cell lysis was inhibited by low-molecular-weight compounds that interfere with receptor binding or with receptor-induced conformational transitions in the envelope glycoproteins. A peptide, T20, potently inhibited cell-cell fusion but had no effect on single cell lysis mediated by the HIV-1 envelope glycoproteins. Thus, critical events in the lysis of single cells by the HIV-1 envelope glycoproteins occur in intracellular compartments accessible only to small inhibitory compounds.  相似文献   

7.
Evidence for pore-forming ability by Legionella pneumophila   总被引:15,自引:5,他引:10  
Legionella pneumophila is the cause of Legionnaires' pneumonia. After internalization by macrophages, it bypasses the normal endocytic pathway and occupies a replicative phagosome bound by endoplasmic reticulum. Here, we show that lysis of macrophages and red blood cells by L . pneumophila was dependent on dotA and other loci known to be required for proper targeting of the phagosome and replication within the host cell. Cytotoxicity occurred rapidly during a high-multiplicity infection, required close association of the bacteria with the eukaryotic cell and was a form of necrotic cell death accompanied by osmotic lysis. The differential cytoprotective ability of high-molecular-weight polyethylene glycols suggested that osmotic lysis resulted from insertion of a pore less than 3 nm in diameter into the plasma membrane. Results concerning the uptake of membrane-impermeant fluorescent compounds of various sizes are consistent with the osmoprotection analysis. Therefore, kinetic and genetic evidence suggested that the apparent ability of L . pneumophila to insert a pore into eukaryotic membranes on initial contact may play a role in altering endocytic trafficking events within the host cell and in the establishment of a replicative vacuole.  相似文献   

8.
Abstract When sodium azide was added to cultures of Myxococcus coralloides D a rapid loss in turbidity was observed. The lysis occurred irrespective of the culture age. If the azide was added to cultures which had been division-inhibited with puromycin, lysis was also induced. Other uncoupling agents (2,4-dinitrophenol, methyltriphenylphosphonium bromide and N , N '-dicyclohexylcarbodiimide) were effective to induce lysis, but not the ionophores gramicidin D or valinomycin. Energizing the membrane by the addition of glycerol, glucose or ascorbate to prelytic cultures was a means of preventing the lytic events.  相似文献   

9.
As for most cell-cell fusion events, the molecular details of membrane fusion during yeast mating are poorly understood. The multipass membrane protein Prm1 is the only known component that acts at the step of bilayer fusion. In its absence, mutant mating pairs lyse or arrest in the mating reaction with tightly apposed plasma membranes. We show that deletion of FIG 1, which controls pheromone-induced Ca(2+) influx, yields similar cell fusion defects. Although extracellular Ca(2+) is not required for efficient cell fusion of wild-type cells, cell fusion in prm1 mutant mating pairs is dramatically reduced when Ca(2+) is removed. This enhanced fusion defect is due to lysis. Time-lapse microscopy reveals that fusion and lysis events initiate with identical kinetics, suggesting that both outcomes result from engagement of the fusion machinery. The yeast synaptotagmin orthologue and Ca(2+) binding protein Tcb3 has a role in reducing lysis of prm1 mutants, which opens the possibility that the observed role of Ca(2+) is to engage a wound repair mechanism. Thus, our results suggest that Prm1 and Fig1 have a role in enhancing membrane fusion and maintaining its fidelity. Their absence results in frequent mating pair lysis, which is counteracted by Ca(2+)-dependent membrane repair.  相似文献   

10.
Protoplast formation by Histoplasma capsulatum yeasts using high concentrations of MgSO(4) occurs either by lysis of the bud or lysis of the entire cell wall. Both mechanisms may also occur simultaneously. Neither the protoplast emerging through a hole in the cell wall nor the freshly released protoplast has a recognizable cell wall or the remnant of such. The protoplast contains all the organelles of the normal cell except for mesosomes. During protoplast formation the nucleus increases in size and produces several nuclear masses by the invaginations of the internal layer of the nuclear membrane. All these nuclear masses are surrounded by the external layer of the nuclear membrane. Several nuclei with a normal nuclear membrane are formed later.  相似文献   

11.
Lethal toxin is a major anthrax virulence factor, causing the rapid death of experimental animals. Lethal toxin can enter most cell types, but only certain macrophages and cell lines are susceptible to toxin-mediated cytolysis. We have shown that in murine RAW 264.7 cells, sublytic amounts of lethal toxin trigger intracellular signaling events typical for apoptosis, including changes in membrane permeability, loss of mitochondrial membrane potential, and DNA fragmentation. The cells were protected from the toxin by specific inhibitors of caspase-1, -2, -3, -4, -6, and -8. Phagocytic activity of macrophages was inhibited by sublytic concentrations of lethal toxin. Infection of cells with anthrax (Sterne) spores impaired their bactericidal capacity, which could be reversed by a lethal toxin inhibitor, bestatin. We suggest that apoptosis rather than direct lysis is biologically relevant to lethal toxin intracellular activity.  相似文献   

12.
The human immunodeficiency virus protease (HIV-1 PR) was expressed both in the yeast Saccharomyces cerevisiae and in mammalian cells. Inducible expression of HIV-1 PR arrested yeast growth, which was followed by cell lysis. The lytic phenotype included loss of plasma membrane integrity and cell wall breakage leading to the release of cell content to the medium. Given that neither poliovirus 2A protease nor 2BC protein, both being highly toxic for S. cerevisiae, were able to produce similar effects, it seems that this lytic phenotype is specific of HIV-1 PR. Drastic alterations in membrane permeability preceded the lysis in yeast expressing HIV-1 PR. Cell killing and lysis provoked by HIV-1 PR were also observed in mammalian cells. Thus, COS7 cells expressing the protease showed increased plasma membrane permeability and underwent lysis by necrosis with no signs of apoptosis. Strikingly, the morphological alterations induced by HIV-1 PR in yeast and mammalian cells were similar in many aspects. To our knowledge, this is the first report of a viral protein with such an activity. These findings contribute to the present knowledge on HIV-1-induced cytopathogenesis.  相似文献   

13.
Experiments were performed with three different cell lines, mouse fibroblast LM cells, HeLa S3 cells, and Ehrlich Ascites Tumor (EAT) cells, to establish the possible importance of hyperthermic-induced alterations in cellular K+ content in the mechanism of cell killing by heat. At different time points after the hyperthermic treatment, the K+ content in the cells, the uptake of the dye Trypan Blue (TB), and cell lysis were assayed. Heat-induced K+ loss preceded TB uptake which was followed by the heat-induced cell lysis. Lysis was assayed as disappearance of cells by counting the cells at different time points in a hematocytometer. The presence of serum during and after the heat treatment was of considerable importance with respect to K+ loss and TB uptake. K+ loss and TB uptake after the heat treatment were less when serum was present during and after hyperthermia. To protect against cell lysis, however, the serum had to be present during a preincubation period of 24 h. Clonogenic ability was not affected by the presence of serum. It is concluded that the intracellular K+ level of hyperthermic-treated cells is not a direct cause for cell killing and that heat-induced alterations in the cell leading to cell lysis are different from the processes decreasing cellular K+ content and permeabilizing the plasma membrane for trypan blue.  相似文献   

14.
This study was carried out to investigate HOCl-induced lysis of human erythrocytes. Using reagent HOCl with isolated red cells, we showed that the rate of lysis was dependent on the dose of HOCl per red cell rather than on the concentration of oxidant. The process was inhibited by scavengers such as methionine and taurine, but only if they were present at the time of addition of HOCl. Lysis was preceded by a decrease in cell density, a change in the deformability of the membrane as evidence by ektacytometry, and an increase in K+-leak. Electron microscopy showed extensive disruption of the membrane. Increasing doses of HOCl caused progressive loss of membrane thiols, bu complete thiol oxidation by N-ethylmaleimide did not result in an equivalent rate of lysis. Restoration of oxidised thiols by incubation with glucose did not significantly alter the pattern of lysis. Taken together, these results suggest that thiol oxidation was not responsible for HOCl-mediated lysis. There was evidence of increasing crosslinking of membrane proteins on electrophoresis, only some of which was due to the formation of disulfides. TLC of the membrane lipids indicated that there may be formation of chlorohydrins by reaction of HOCl with the fatty acid double bonds. This reaction results in the formation of a more polar species which, if formed, would be extremely disrupting to the lipid bilayer. The results indicate that HOCl-mediated damage to the membrane proteins or to the lipid bilayer comprises an initial damaging event that sets the cells on a path toward eventual lysis.  相似文献   

15.
Structural changes during lysis of a psychorophilic marine bacterium   总被引:3,自引:1,他引:2  
The marine psychrophile, a red, gram-negative motile rod with a single polar flagellum, is stable when suspended in 0.1 m Mg(2+) plus 0.5 m NaCl at 0 C and neutral pH but lyses if the salt composition of the medium is changed, the temperature raised above 20 C, or the pH lowered. Lysis is accompanied by a fall in turbidity, a release of ultraviolet-absorbing substances, and a loss of deoxyribonucleic acid and ribonucleic acid. Ultrastructural changes accompanying lysis were studied. Thin sections of cells fixed while intact showed a triple-layered cell wall and cytoplasmic membrane, each 6.0 to 7.5 nm thick. Mesosomes were also observed. Either Na(+) or Mg(2+) could maintain wall integrity, whereas Mg(2+) was needed for membrane integrity. In distilled water, lysis was very extensive, and much material was released as wall fragments and as vesicles which probably came from the wall and cytoplasmic membrane. Lysis at 37 C resulted in degradation of the wall and liberation of wall fragments. The cell membrane was rarely observed as a triple-layered structure in such temperature-lysed cells. After lysis at pH 5.0, the cell wall was distorted, and only a suggestion of the cell membrane remained. Replicas showed that this organism had a matted surface which was distorted under different conditions of lysis.  相似文献   

16.
The bacterial expression of a single-chain antibody fragment, designated L6 sFv, was examined. Periplasmic targeting resulted in the production of a correctly folded protein that bound tumor antigen. However, immediately after induction at either 30°C or 37°C there was a significant loss in bacterial viability, which was followed by a loss in absorbance. The loss in absorbance correlated with cell lysis and release of the L6 sFv into the culture supernatant. The kinetics of appearance of L6 sFv in the supernatant paralleled that of periplasmic \-lactamase and confirmed an initial loss of cell-wall integrity prior to cell lysis. Bacteria incubated at 30°C produced approximately threefold more correctly folded antibody fragment because of an increase in the number of cells/A 660 at the lower incubation temperature. More than 95% of the L6 sFv, made at either incubation temperature, was incorrectly folded. Osmotic-shock procedures did not release L6 sFv. However, in situ subtilisin susceptibility experiments with bacterial spheroplasts confirmed a periplasmic location. French press disruption resulted in the release of correctly but not incorrectly folded material. Membrane fractionation revealed that the incorrectly folded L6 sFv remained associated with both the inner and outer membrane. These results demonstrate that, in this system, antibody fragment expression resulted initially in cell death, which was followed by release of protein into the culture supernatant and eventually cell lysis. It is also suggested that membrane association in the periplasmic space may impede proper folding.  相似文献   

17.
M Heinkelein  S Sopper    C Jassoy 《Journal of virology》1995,69(11):6925-6931
Individuals infected with the human immunodeficiency virus (HIV) experience a marked loss of CD4+ T lymphocytes, leading to fatal immunodeficiency. The mechanisms causing the depletion of these cells are not yet understood. In this study, we observed that CD4+ T lymphocytes from HIV type 1 (HIV-1)-infected and uninfected individuals rapidly lysed B lymphoblasts expressing the HIV-1 envelope glycoprotein on the cell surface and Jurkat cells expressing the complete virus. Contact of uninfected CD4+ T cells with envelope glycoprotein-expressing cells also resulted in the lysis of the uninfected CD4+ T cells. Cytolysis did not require priming or in vitro stimulation of the CD4+ T cells and was not restricted by major histocompatibility complex molecules. Cytotoxicity was inhibited by soluble CD4 and anti-CD4 monoclonal antibodies that block binding of CD4 to gp120. In addition, neutralizing anti-CD4 and anti-gp120 monoclonal antibodies which block postbinding membrane fusion events and syncytium formation also inhibited cell lysis, suggesting that identical mechanisms in HIV-infected cultures underlie cell-cell fusion and the cytolysis observed. However, cytotoxicity was not always accompanied by the formation of visible syncytia. Rapid cell lysis after contact of uninfected and HIV-1-infected CD4+ T cells may explain CD4+ T-cell depletion in the absence of detectable syncytia in infected individuals. Moreover, because of its vigor, lysis of envelope-expressing targets by contact with unprimed CD4+ T lymphocytes may at first glance resemble antigen-specific immune responses and should be excluded when cytotoxic T-lymphocyte responses in infected individuals and vaccinees are evaluated.  相似文献   

18.
Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20–30 % lipid and 50–75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2–3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.  相似文献   

19.
J Cao  I W Park  A Cooper    J Sodroski 《Journal of virology》1996,70(3):1340-1354
Human immunodeficiency virus type 1 (HIV-1) infection of CD4-positive lymphocytes is accompanied by acute cytopathic effects, i.e., syncytium formation and single-cell lysis. Syncytium formation involves cell-cell fusion mediated by viral envelope glycoproteins on the surface of infected cells and by CD4 glycoproteins on adjacent cells. The molecular basis for the lysis of single-HIV-1 infected cells is unclear. Here we report that the expression of functional envelope glycoproteins from primary and laboratory-adapted HIV-1 isolates resulted in the lysis of single CD4-positive lymphocytes. As was previously observed in HIV-1 infected cultures, single-cell lysis in this system primarily involved necrosis and was not inhibited by soluble CD4. Binding of the viral envelope glycoproteins to the CD4 glycoprotein facilitated, but was not sufficient for, cytolysis. Importantly, the ability of the HIV-1 envelope glycoproteins to mediate membrane fusion was essential for single-cell killing. By contrast, the long cytoplasmic tail of the gp41 transmembrane envelope glycoprotein was neither necessary nor sufficient for single-cell lysis. These results suggest that intracellular envelope glycoprotein-CD4 interactions initiate autofusion events that disrupt cell membrane integrity, leading to single-cell lysis by HIV-1.  相似文献   

20.
We have assembled a micropipette aspiration assay to measure membrane destabilization events in which large (20-30 microns diameter) unilamellar vesicles are manipulated and exposed to membrane destabilizing agents. Single events can be seen with a light microscope and are recorded using both a video camera and a photomultiplier tube. We have performed experiments with a wild-type fusion peptide from influenza virus (X31) and found that it induces pH-dependent, stochastic lysis of large unilamellar vesicles. The rate and extent of lysis are both maximum at pH 5; the maximum rate of lysis is 0.018 s-1 at pH 5. An analysis of our data indicates that the lysis is not correlated either to the size of the vesicles or to the tension created in the vesicle membranes by aspiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号