首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes formed by binding 125I- or 3H-labeled neuropeptides to one of the two binding sites of their specific antibodies allowed specific and sensitive labeling of various peptidergic neurons, which could be detected by classical autoradiographic methods. To visualize two neuronal antigens on the same material at both light and electron microscopic level, we used a new technique of double immunocytochemical labeling, combining immunoperoxidase and radioimmunocytochemistry. The main steps of the process included: (a) indirect labeling of the first antigen by its specific antibody and by a peroxidase-labeled Fab immunoglobulin fragment directed against the primary antibody; (b) direct labeling of the second antigen by a radiolabeled peptide-antibody complex; (c) revealing of the first label in the presence of peroxidase substrate; and (d) revealing of the second label by autoradiographic treatment of tissue sections. Compared with other known techniques of double immunostaining, this technique offers major advantages for combined visualization of two neuronal antigens at the electron microscopic level: (a) two neuron types can be labeled by a pre-embedding approach, allowing highly sensitive detection of neuronal antigens throughout the 50-microns thickness of vibratome sections; (b) two primary antibodies obtained in the same species can be used to label the two antigens without any risk of crossreactions between the two successive labelings; and (c) the two labels can easily be differentiated, even when they are co-localized within the same neuron structures. Application of this double immunostaining technique is illustrated by data obtained in rat hypothalamus concerning the relationships among a variety of identified neurons and the co-localization of different neuropeptides within the same neuron system.  相似文献   

2.
We describe labeling of neurons in the central nervous system of two cricket species, Teleogryllus commodus and T. oceanicus, with both mono- and polyclonal antibodies against the PER protein. Western blots reveal that the monoclonal antibodies recognize a single protein with a molecular weight of approximately 94 kDa, i.e., similar to that of the PER protein of the moth, Anterea pernii. Neurons and their processes are labeled both in the optic lobes and in the central brain. Processes occur in the accessory medulla, the medulla, and proximal lamina, in the central complex, in the non-glomerular neuropil, and in the retrocerebral complex, suggesting that PER-containing neurons form a widely distributed network. Neurons and processes were also labeled in the meso- and metathoracic ganglia. Four to six PER-immunoreactive (ir) neurons with processes in the accessory medulla were double labeled by an antibody against pigment-dispersion factor (PDF), a peptide that is implicated in circadian rhythmicity in Drosophila. In the central brain, projections of fibers labeled by the anti-PER and anti-PDF antibodies were mainly distinct, with overlap only in a few restricted regions. In most neurons, including those projecting into the accessory medulla, PER labeling was restricted to the cytoplasm and there was no indication of circadian variation in the intensity of staining.  相似文献   

3.
Lateral mobility of AMPA-type glutamate receptors as well as their trafficking between plasma membrane and intracellular compartments are major mechanisms for the regulation of synaptic plasticity. Here we applied a recently established labeling technique in combination with lentiviral expression in hippocampal neurons to label individual ACP-tagged AMPA receptor subunits specifically at the surface of neurons. We show that this technique allows the differential labeling of two receptor subunits on the same cell. Moreover, these subunits are integrated into heteromeric receptors together with endogenous subunits, and these labeled receptors are targeted to active synapses. Sequential labeling experiments indicate that there is basal surface insertion of GluR1, GluR2 and GluR3, and that this insertion is strongly increased following potassium depolarization. Moreover, we found that ACP-labeled GluR3 shows the highest surface mobility among GluR1, GluR2, and GluR3. In double-infected neurons the diffusion coefficient of labeled GluR2 at the surface of living neurons is significantly higher in GluR2/GluR3-infected neurons compared to GluR1/GluR2-infected neurons suggesting a higher mobility of GluR2/3 receptors compared to GluR1/2 receptors. These results indicate that surface mobility is regulated by different subunit compositions of AMPA receptors.  相似文献   

4.
In leech, the central annulus of each midbody segment possesses seven pairs of sensilla, which are mixed clusters of primary peripheral sensory neurons that extend their axons into the CNS where they segregate into distinct fascicles. Pathway selection by individual afferent growth cones of sensillar neurons was examined by double labeling using intracellular dye-filling with anitobody labeling in early Hirudo medicinalis embryos. The monoclonal antibody Lan3–2 was used because sensillar neuronal tracts are specifically labeled by this antibody. Examining 68 individually filled neurons we found that sensillar neuron growth cones bifurcate within the CNS, that they project long filopodia capable to sampling the local environment, and that all of them appeared to choose a single particular CNS fascicle without apparent retraction or realignment of growth cones. Furthermore, each side of the bifurcating afferent growth cones always chose the same fascicle, implying a specific choice of a distinct labeled pathway. By dye-filling individual central neurons (P-cells), we show that there are centrally projecting axons present at the time sensillar afferents enter the ganglionic primordia and select a particular fascicle, and we confirm that at least the dorsal peripheral nerve is likely to be pioneered by central neurons, not by the peripheral afferent. In the sensillum studied here, we sound examples of sensory neurons extending axons into one of all the avilable fascicles. Thus, an individual embryonic sensillum possesses a heterogeneous population of afferents with respect to the central fascicle chosen. This is consistent with the idea that segregation into distinct axon fascicles may be based upon functional differences between individual afferent neurons. Our findings argue strongly in favor of specific pathway selection by afferents in this system and are consistent with previous suggestions that there exists a hierarchy of cues, including surface glycoconjugates that mediate navigation of the sensillar growth cones and the fasciculation of their axons. 1994 John Wiley & Sons, Inc.  相似文献   

5.
Conventional stable isotope labeling with amino acids in cell culture (SILAC) requires extensive metabolic labeling of proteins and therefore is difficult to apply to cells that do not divide or are unstable in SILAC culture. Using two different sets of heavy amino acids for labeling allows for straightforward SILAC quantitation using partially labeled cells because the two cell populations are always equally labeled. Here we report the application of this labeling strategy to primary cultured neurons. We demonstrated that protein quantitation was not compromised by incomplete labeling of the neuronal proteins. We used this method to study neurotrophin-3 (NT-3) signaling in primary cultured neurons. Surprisingly our results indicate TrkB signaling is a major component of the signaling network induced by NT-3 in cortical neurons. In addition, involvement of proteins such as VAMP2, Scamp1, and Scamp3 suggests that NT-3 may lead to enhanced exocytosis of synaptic vesicles.  相似文献   

6.
Recent studies indicate that electrical coupling among cortical neurons may persist throughout development; electrophysiological recordings made in cortical slices from young rats reveal that numerous GABAergic neurons are electrically coupled. To determine whether these in vitro findings reflect an inhibitory neural circuit that could be functionally relevant in vivo in adult rodents, we sought to identify whether inhibitory, parvalbumin-containing neurons of the mature cortex express gap junction proteins. Immunohistochemistry was used to examine the laminar distribution of the gap junction-forming proteins connexin 32 (Cx32), connexin 36 (Cx36) and connexin 43 (Cx43) in the somatosensory cortex of the adult mouse. Double labeling immunofluorescence identified Cx32, Cx36 and Cx43 in cortical neurons that were immunoreactive (-ir) for the neuronal markers neurofilament 145 kDa and neuronal nuclei (NeuN). Parvalbumin-ir neurons throughout the cortical laminae were labeled with Cx32-ir, Cx36-ir and Cx43-ir. Stereological methods were used to quantify the extent of parvalbumin colocalization with connexins. Analysis indicated that approximately 40% of parvalbumin-ir neurons were double labeled with either Cx32-ir or Cx43-ir, and approximately 50% of parvalbumin-ir neurons were double labeled with Cx36. These findings establish an anatomical substrate for widespread electrical coupling of neurons in somatosensory cortex and suggest that gap junctions among inhibitory interneurons may persist into adulthood, providing an important mechanism for neuronal communication.  相似文献   

7.
Efferent projections of the lateral septal nucleus (LS) to the preoptic area and the hypothalamus were identified in 20 female guinea pigs after iontophoretic injection of the anterograde axonal tracer Fluoro-Ruby. Tubero-infundibular (TI) neurons of the preoptic area and the hypothalamus were retrogradely labeled after intracardiac injection of Granular Blue or Fluoro-Gold. Magnocellular neurons of the supraoptic and paraventricular nuclei were also labeled. The double labeling procedure allowed an estimation of the extent of the direct relationship between LS efferents and TI neurons. Contacts between lateral septal fibers and TI cell bodies were mainly observed at the light-microscopical level in the preoptic area. A group of labeled fibers coursing along the third ventricle established sparse connections with hypothalamic periventricular TI neurons. A few appositions was observed in the infundibular (arcuate) nucleus, suggestive of a monosynaptic regulation of TI neurons by a septo-arcuate tract. Close association with labeled magnocellular neurons was also noted at the edge of the supraoptic and paraventricular nuclei. The sparse but direct connections between LS and TI neurons may be involved in the neuroendocrine functions of the LS.  相似文献   

8.
Sexual behavior in female rats, typified by the lordosis reflex, is dependent upon estrogen action in the ventromedial nucleus of the hypothalamus (VMH) and its surrounding neuropil. However, the synaptic organization of this brain region remains unclear. Pseudorabies virus (PRV) was used to transneuronally label the neural network that innervates the lumbar epaxial muscles that execute the lordosis response. PRV‐labeled neurons were identified within and subjacent to the VMH four days after injection of PRV into the back muscles. The pattern of labeling was defined in relation to three landmarks: the VMH core, as defined by Crystal Violet staining; the shell, as defined by the oxytocin fiber tract; and the cluster of estrogen receptor‐containing cell nuclei. The pattern of PRV labeling in the VMH displayed a striking rostral‐caudal gradient. In general, many of the PRV‐labeled neurons were found in the oxytocin fiber tract, with far fewer in the core of the VMH. Furthermore, PRV‐labeled neurons were rarely found in the cluster of estrogen receptor‐containing neurons, and less than 3% of the PRV‐labeled neurons were double labeled for estrogen receptor. The results suggest that oxytocin may directly influence these lordosis‐relevant VMH projection neurons, whereas estrogen may have transsynaptic effects. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 1–13, 2000  相似文献   

9.
本实验用HRP注入下丘脑腹内侧核结合逆行追踪与抗FOS蛋白和抗酪氨酸羟化酶(TH)抗血清双重免疫细胞化学相结合的三重标记方法,对大鼠孤束核和延髓腹外侧区至下丘脑腹内侧核的儿茶酚胺能投射神经元在胃伤害性刺激后的c-fos表达进行了观察。本文发现孤束核和延髓腹外侧区有七种不同的标记细胞:HRP、Fos、TH单标细胞Fos/HRP、Fos/TH、HRP/TH双标细胞和Fos/HRP/TH三标细胞。上述七种标记细胞主要分布在延髓中段和尾段孤束核的内侧亚核和延髓腹外侧区以及两者之间的网状结构。HRP标记细胞以注射侧为主,对侧有少量分布。本文结果证明,大鼠孤束核、延髓腹外侧区和网状结构内儿茶酚胺能神经元有些至下丘脑腹内侧核的投射,其中一部分儿茶酚胺能神经元参与了胃伤害性刺激的传导和调控。  相似文献   

10.
The present study has been attempted to investigate the issue of intralobular branching of cerebellar afferent axons arising from neurons in TSN and terminating in rPML and cPML sublobules, known to be the face-forelimb and hindlimb receiving areas, respectively. In this aim the double fluorescent retrograde technique was employed in the rabbit. No other reports have addressed this question. Non-overlapping unilateral injections of the cytoplasmic tracers FB and the nuclear dye DY into rPML and cPML, respectively, resulted in numerous single FB or DY labeled neurons and small number of double FB + DY ones in Vp, Vo, Vir and Vic bilaterally, with a very clear ipsilateral predominance. No evidence has been disclosed for projection from Vmes and Vc. Distribution pattern of single labeling allows to assume that projection exhibits some degree of topographical organization. Thus, there are populations of TSN neurons projecting independently to rPML and cPML and, to a larger extent, populations of neurons whose projection areas more or less overlap. Profuse projection arises from Vir and less numerous fibers originate from Vp and the rostral part of Vic. Neurons in Vo, mainly in the caudal regions, participate in a relatively moderate degree to this projection. Double labeled neurons recognized herein indicate that TSN projections reaching the two non-homologous PML regions may be collaterals of the same axons. The cells of origin for such projections are distributed in defined regions of Vir (n = 214), Vic (n = 107), Vp (n = 73) and Vo (n = 25). Considering small percent of neurons with divergent axons (about 3% in Vic and Vo, and 2% in Vir and Vp) it can be concluded that trigeminal inputs to rPML and cPML correspond to a larger extent to separate rather than collateral projection. In spite of this the findings indicate that functionally different PML regions are linked. The present results are discussed with those of earlier studies and commented on possible functional meaning of the projection by way of axonal branchings.  相似文献   

11.
We generated transgenic mice in which red, green, yellow, or cyan fluorescent proteins (together termed XFPs) were selectively expressed in neurons. All four XFPs labeled neurons in their entirety, including axons, nerve terminals, dendrites, and dendritic spines. Remarkably, each of 25 independently generated transgenic lines expressed XFP in a unique pattern, even though all incorporated identical regulatory elements (from the thyl gene). For example, all retinal ganglion cells or many cortical neurons were XFP positive in some lines, whereas only a few ganglion cells or only layer 5 cortical pyramids were labeled in others. In some lines, intense labeling of small neuronal subsets provided a Golgi-like vital stain. In double transgenic mice expressing two different XFPs, it was possible to differentially label 3 neuronal subsets in a single animal.  相似文献   

12.
Spinocerebellar neurons have been found in previous studies in lamina IX of the lumbosacral spinal cord. This lamina has been characterized as being composed of motor cell groups and the spinocerebellar neurons in the lamina have been found to have certain morphological similarities with the motoneurons. Retrograde double labeling technique, utilizing fluorescent dyes, was used for studying the relations between the spinocerebellar neurons and the motoneurons in lamina IX of the lumbosacral spinal cord in four adult cats. In three of them, Rhodamine labeled latex microspheres were injected bilaterally into the cerebellum and Fast Blue (FB) was injected into hindlimb nerves. In the fourth case, FB was injected into the cerebellum, while the peripheral nerves were injected with propidium iodide. Some overlap was found between labeled spinocerebellar neurons and motoneurons in certain parts of lamina IX, especially in the ventrolateral nucleus in the caudal part of L5 and rostral L6, in the dorsolateral nucleus from the caudal part of L5 to L6 and in the ventromedial nucleus at the S2 level. No double labeled neurons were found, however, in any of these or in other examined areas. This strongly indicates that spinocerebellar neurons in lamina IX are a separate population, different from motoneurons.  相似文献   

13.
Summary Injection of wheat-germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) into the superior cervical ganglion (SCG) of the rat results in accumulation of WGA-HRP in sympathetic postganglionic neurons in the contralateral SCG. The sympathetic pathways involved and the mechanism underlying the labeling were investigated. The labeling in neurons in the contralateral SCG was apparent 6 h after injection and increased in intensity with longer survival times. The number of labeled neurons reached 1300 at 72 h after the injection. Transection of the external (ECN) or internal carotid nerves (ICN) resulted in considerable reduction in the number of labeled neurons. Combined transection of both ECN and ICN virtually eliminated labeling in the contralateral SCG. This provides strong evidence that these two nerves are the major pathways for WGA-HRP transport out of the SCG. No labeling was observed in the contralateral SCG following injection of horseradish peroxidase (HRP). Therefore, it seems unlikely that a direct nerve connection exists between the bilateral ganglia. Instead, the labeling of contralateral SCG neurons appears to depend on the transneuronal transport capacity of WGA-HRP, which conveys the marker in an anterograde direction along the postganglionic fibers to terminals in sympathetic target organs, and then delivers it transneuronally to contralateral SCG neurons. We suggest that the sympathetic nerve fibers originating in the bilateral SCGs run intermingled and are in close contact in their peripheral target organs.  相似文献   

14.
In spite of the belonging to the same c-type lysozyme family, hen egg-white lysozyme (HEWL) was much less susceptible to the dual-affinity labeling with 2',3'-epoxypropyl beta-glycoside of N-acetyllactosamine (Galbeta1,4GlcNAc-Epo) than human lysozyme (HL). The three-dimensional structures of the HEWL labeled with single Galbeta1,4GlcNAc-Epo and the Glu102-mutant HL labeled with double Galbeta1,4GlcNAc-Epo were determined by X-ray crystallography at resolutions of 1.85 and 2.0 A, respectively. The overall conformation and the interaction mode of the carbohydrate ligand part in the singly labeled HEWL and the doubly labeled Glu102-mutant HL were basically identical to those of the correspondingly labeled wild-type HL with minor alterations in some stereochemical parameters. A detailed comparison of the structures revealed the key protein-carbohydrate and carbohydrate-carbohydrate interactions essential for the dual labeling. It was suggested that the difference in the efficiency of the dual labeling was caused by the structural difference between Gln104 in HL and Asn103 in HEWL. The relevance to our previous study and the carbohydrate-carbohydrate interaction on cell-surface membranes were discussed.  相似文献   

15.
Cao JL  Zeng YM  Zhang LC  Duan SM 《生理学报》2000,52(3):235-238
运用Fos免疫组织化学、NADPH-d组织化学及Fos/NADPH-d双标技术,研究了吗啡耐受对福尔马林致痛大鼠脊髓Fos、NADPH-d阳性及Fos/NADPH-d双标神经元表达的影响。结果观察到:在非吗啡耐受大鼠,福尔马林诱发的Fos-like immunoreactivity(Fos-LI)主要分布在同侧脊髓背角浅层和颈部,急性静注吗啡可减少Fos-LI表达;长时间应用吗啡导致福尔马林诱发的  相似文献   

16.
A new recombinant virus which labeled the infected neurons in a Golgi stain-like fashion was developed. The virus was based on a replication-defective Sindbis virus and was designed to express green fluorescent protein with a palmitoylation signal (palGFP). When the virus was injected into the ventrobasal thalamic nuclei, many neurons were visualized with the fluorescence of palGFP in the injection site. The labeling was enhanced by immunocytochemical staining with an antibody to green fluorescent protein to show the entire configuration of the dendrites. Thalamocortical axons of the infected neurons were also intensely immunostained in the somatosensory cortex. In contrast to palGFP, when DsRed with the same palmitoylation signal (palDsRed) was introduced into neurons with the Sindbis virus, palDsRed neither visualized the infected neurons in a Golgi stain-like manner nor stained projecting axons in the cerebral cortex. The palDsRed appeared to be aggregated or accumulated in some organelles in the infected neurons. Anterograde labeling with palGFP Sindbis virus was very intense, not only in thalamocortical neurons but also in callosal, striatonigral, and nigrostriatal neurons. Occasionally there were retrogradely labeled neurons that showed Golgi stain-like images. These results indicate that palGFP Sindbis virus can be used as an excellent anterograde tracer in the central nervous system.  相似文献   

17.
The terminal distributions of spinal and dorsal column nuclear projections to tectum, pretectum, and central gray of hedgehog tenrecs (Echinops telfairi and Setifer setosus) were investigated using anterograde axonal flow and various tracer substances. In the inferior colliculus, the densest and most extensive mesencephalic projections were found within the pericentral regions. One target area, referred to as the external portion of the inferior colliculus, was represented as a semicircle of grain patches lateral and caudal to the central nucleus. This region received somesthetic afferents from the dorsal column nuclei and from spinal segments at various levels. In contrast, after high cervical injections, the pericentral portion dorsomedial to the rostral half of the central nucleus was labeled almost exclusively. This area of labeling was distinct from the labeling in the central gray and might be best compared with the intercollicular zone in other species. The superior colliculus received projections predominantly from the high cervical cord; minor projections also arose from lumbar spinal segments and the dorsal column nuclei. The terminal field covered roughly the caudal half of the colliculus and involved the stratum griseum intermediale in a patch-like fashion. Some labeling was also found in the stratum griseum profundum and in the stratum griseum superficiale. Other than in the colliculi, weak pretectal projections were observed following dorsal column nuclear injections, while the nucleus of Darkschewitsch was labeled best following lumbosacral injections. All mesencephalic target areas were labeled consistently on the contralateral side, while their ipsilateral side was involved to a varying degree: The relatively most prominent ipsilateral labeling was seen in the central gray, being roughly similar on both sides; scarcely any labeling was noted in the ipsilateral superior colliculus. Tectal injections of retrograde tracer, in addition, revealed a considerable number of labeled neurons in a relatively cell-poor region immediately ventral to the high cervial dorsal horn. This region might correspond to the lateral cervical nucleus, an aggregation of neurons that so far has only been demonstrated in higher mammals.  相似文献   

18.
Electron microscopic sections, immunocytochemically labeled with colloidal gold, can be prepared for double labeling by applying the "EM-silver enhancement" procedure. This method, a photographic, so-called physical, development, increases the size of the gold marker to a predeterminable value and thereby inactivates the anti-species antibody present on the gold grain, thus allowing the labeling of a second antigen with antibody raised in the same species.  相似文献   

19.
Ma WL  Zhang WB  Zhang YF 《生理学报》2003,55(1):65-70
应用荧光金(FG)逆行束路追踪结合Fos和calbindin D-28k(CB)免疫荧光组织化学三重标记法,观察了大鼠三叉神经脊束间质核(INV)接受口面部皮肤和上消化道伤害性信息的CB神经元向臂旁核(PB)的投射。结果显示,口周刺激组FG逆标细胞和Fos免疫反应阳性细胞主要分布于注射和刺激同侧INV的背侧边缘旁核(PaMd)和三叉旁核(PaV);大量的CB免疫阳性细胞分布于双侧INV。同侧INV内FG逆标细胞中有77.3%呈CB免疫反应阳性,40.7%呈Fos免疫反应阳性。在FG和CB双标记的神经元中,又有一部分(约38.5%)为FG/CB/Fos三标细胞。上消化道刺激组的FG逆标细胞、CB免疫阳性细胞和FG/CB双标细胞的数量和分布与口周刺激组相似,但Fos免疫阳性细胞分布于双侧的INV。在同侧INV,FG/Fos双标细胞占FG逆标细胞总数的41.9%,FG/CB/Fos三标细胞占FG/CB双标细胞的52.0%。以上结果提示,INV直接投射到PB的CB神经元接受口面部皮肤和上消化道的伤害性信息,CB神经元可能参与经INV中继的外周伤害性信息向PB的传递。  相似文献   

20.
Lactoperoxidase and glucose oxidase catalyzed 125I-iodination was used to specifically label isolated rat renal brush border membrane vesicles from either side of the membrane. Autoradiography of total membrane proteins demonstrated that asymmetric labeling was achieved. Specific immunoprecipitates of aminopeptidase M, an established transmembrane protein, and of γ-glutamyltransferase were isolated from vesicles solubilized with Triton X-100 or with papain. Following electrophoresis and autoradiography, the immunoprecipitates of the two solubilized forms of each enzyme derived from externally labeled vesicles exhibited the same intensity of labeling. In these experiments, the small subunit of the γ-glutamyltransferase was preferentially labeled suggesting that, compared to the large subunit, it is more exposed on the external surface of the membrane. With the samples derived from internally labeled vesicles, the Triton-solubilized form of each enzyme was intensely labeled, whereas the papain-solubilized forms contained insignificant amounts of radioactivity. Thus, the extent of contramembrane labeling was minimal. In these experiments, the large subunit of the γ-glutamyltransferase was preferentially labeled. The similarity of the labeling patterns obtained for aminopeptidase M and γ-glutamyltransferase suggests that the hydrophobic domain of the two amphipathic enzymes are selectively labeled from the internal surface and that the γ-glutamyltransferase may also be a transmembrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号