首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acetylputrescine deacetylase was induced in Micrococcus luteus K-11, and was partially purified and characterized briefly. The enzyme was most active toward acetylputrescine, followed by N8-acetylspermidine and acetylcadaverine, but was inactive toward N1-acetylspermidine and N1-acetylspermine. The Km value for acetylputrescine was 0.321 mM. It was almost unaffected by -SH blocking agents but was inhibited by metal ions such as Cu2+ and Ni2+. Its molecular weight estimated by Sephacryl S-200 column chromatography was 115000.  相似文献   

2.
The yeast Candida boidinii when grown on spermidine, diaminopropane, putrescine or cadaverine as sole nitrogen source contains an N-acetyltransferase capable of acetylating the primary amino groups of spermine, spermidine, acetylspermidines, acetylputrescine and alpha, omega-diaminoalkanes. In the case of spermidine, the products were N1-acetylspermidine and N8-acetylspermidine in the ratio 50:45 with traces of other unidentified products. The enzyme was partially purified and the stoichiometry determined, together with apparent Km and V values for a number of substrates. The pH optimum was about 8.8 for putrescine and 9.3 for spermidine. The unstable enzyme was partially stabilized by 10% (v/v) glycerol or bovine serum albumin (5 mg/ml). The kinetic parameters were determined with putrescine as substrate and the mechanism shown to be of the sequential type. The enzyme was shown to be located in the mitochondria of C. boidinii, in contrast to mammalian N-acetyltransferases. The enzyme was found in a number of other yeast species when grown on spermidine or putrescine, but was only present in those species that had previously been found to contain polyamine oxidase. It is suggested that in C. boidinii, as in mammals, acetylation of spermidine and putrescine must precede their catabolism.  相似文献   

3.
The functions of acetylpolyamines were examined with respect to stimulation of protein synthesis and cell growth. Unlike polyamines, acetylpolyamines could not lower the optimal Mg2+ concentration of protein synthesis, and the degree of stimulation of protein synthesis by acetylpolyamines was small. The addition of N1-acetylspermine did not stimulate cell growth of a polyamine-requiring mutant of Escherichia coli MA261, although acetylspermine was accumulated in the cells. Acetylspermine did not interfere with polyamine stimulation of protein synthesis and cell growth of E. coli MA261. The binding of acetylpolyamines to RNA was very weak, and the binding of polyamines to RNA was not disturbed significantly by the presence of acetylpolyamines. When the growth of E. coli MA261 was stimulated by addition of polyamines, significant amounts of acetylpolyamines were also formed in the cells. These results suggest that acetylation of polyamines, together with polyamine excretion, may regulate the intracellular level of the parent polyamines when excess amounts of polyamines accumulate intracellularly.  相似文献   

4.
A procedure for the preparation of crystalline UDP-glucose pyrophosphorylase is described. K(s) values for UDP-glucose and UTP were determined as 7 and 20 muM respectively, the latter being confirmed by three methods. By assuming an octameric structure, 1 mol of enzyme subunit bound 1 mol of substrate. The metal-ion activator, Mg2+, did not affect the equilibrium between nucleotide and enzyme. A substrate analogue, alphabeta-methylene-UTP, was synthesized and had the same K(s) value as UTP. In its presence, the K(s) for glucose 1-phosphate decreased by two orders of magnitude, thus confirming a compulsory binding order and excluding an uridylated enzyme intermediate. The results are discussed with respect to their implications in vivo.  相似文献   

5.
A method for the quantification of acetylpolyamines, N1,N12-diacetylspermine (DiAcSpm), monoacetylspermidine (AcSpd), and N1,N8-diacetylspermidine (DiAcSpd), identifying each compound simultaneously, was developed with the goal of evaluating these acetylpolyamines as potential biomarkers of cancer. The method consists of prepurification of acetylpolyamines in urine with commercially available cartridges and derivatization with heptafluorobutyric (HFB) anhydride. HFB derivatives of acetylpolyamines were determined simultaneously using 15N-labeled acetylpolyamines as internal standards by electrospray ionization and time-of-flight mass spectrometry (ESI-TOF MS). After the method was validated, the urinary acetylpolyamines of 38 cancer patients were quantified with this method. A comparison of the concentrations of DiAcSpm with those measured by a colloidal gold aggregation method demonstrated a correlation coefficient of 0.996, showing that the two methods were equally satisfactory. Analysis of the correlation between DiAcSpd or AcSpd and DiAcSpm, performed for the first time, indicated the usefulness of DiAcSpm as a urinary biomarker of cancer. During the course of this work, two simple methods for the preparation of α,ω-diacetylpolyamines were developed, and a possibility to separate and determine the concentrations of the two isomers, N1-acetylspermidine and N8-acetylspermidine in AcSpd, was shown by tandem mass spectrometry (MS/MS).  相似文献   

6.
An extracellular alkaline carboxymethycellulase (CMCase) from Bacillus subtilis was purified by salt precipitation followed by anion-exchange chromatography using DEAE-Sepharose. The cell-free supernatant containing crude enzyme had a CMCase activity of 0.34 U/mg. The purified enzyme gave a specific activity of 3.33 U/mg, with 10-fold purification and an overall activity yield of 5.6%. The purified enzyme displayed a protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular size of 30 kDa, which was also confirmed by zymogram analysis. The enzyme displayed multisubstrate specificity, showing significantly higher activity with lichenan and β-glucan as compared to carboxymethylcellulose (CMC), laminarin, hydroxyethylcellulose, and steam-exploded bagasse, and negligible activity with crystalline substrate such as Avicel and filter paper. It was optimally active at pH 9.2 and temperature 45°C. The enzyme was stable in the pH range 6–10 and retained 70% activity at pH 12. Thermal stability analysis revealed that the enzyme was stable in temperature range of 20°C to 45°C and retained more than 50% activity at 60°C for 30 min. The enzyme had a Km of 0.13 mg/ml and Vmax of 3.38 U/mg using CMC as substrate.  相似文献   

7.
The monoclinic crystalline form of aldolase from rabbit skeletal muscle grown at 29 degrees C is catalytically active in the direction of aldol cleavage. Activity was assayed for in a crystallization buffer containing 45% saturated ammonium sulfate using chemically unmodified single crystals cut to precise dimensions. Diffusion effects on velocities from assays employing aldolase crystals do not appear to be limiting when cut single crystals are crushed. Assays of crushed crystals are linear with respect to both time and enzyme concentration. Kinetic constants are reported for both substrates fructose 1-phosphate and fructose 1,6-phosphate. Maximal velocities and binding constants determined differ by no more than a factor of 2 between the crystalline and the soluble state of the enzyme. Analysis of the kinetic constants for fructose 1-phosphate as substrate shows that binding of substrate does not change in going to the crystalline state. Release of product is reduced roughly 2-fold in the crystalline state. A similar conclusion can be reached in the case of fructose 1,6-phosphate as substrate provided the "on" steps of substrate and product are only diffusion limited but independent of the physical state of the enzyme. It is not possible to distinguish between a more sluggish conformational change during catalysis or simply tighter product binding in the crystalline state as compared to the soluble enzyme state.  相似文献   

8.
Endoglucanase 2 (EG2) of the cellulolytic ruminal anaerobe Bacteroides succinogenes is a 118-kilodalton (kDa) enzyme which binds to cellulose and produces cellotetraose as the end product of hydrolysis. The purified enzyme was treated with the protease trypsin in an attempt to isolate peptides which retained the ability to either hydrolyze soluble carboxymethyl cellulose or bind to insoluble cellulose. There was no loss in endoglucanase activity (carboxymethylcellulase) over a period of 2 h following the addition of trypsin. In comparison, there was a greater than eightfold reduction in the binding of carboxymethylcellulase activity to crystalline cellulose. A Lineweaver-Burk plot with amorphous cellulose as the substrate revealed that the trypsin-digested enzyme had an identical Vmax but a 1.9-fold-lower Km in comparison with the intact enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the trypsin-digested enzyme revealed two major peptides of 43 and 51 kDa (p43 and p51). The 43-kDa peptide was able to bind to both amorphous and crystalline cellulose, whereas p51 did not. Purified p51 had a molar activity toward carboxymethyl cellulose which was identical to that of the intact enzyme, but activity toward both amorphous and crystalline cellulose was reduced approximately twofold. Two high-titer monoclonal antibodies from mice immunized with the intact protein recognized p43 but not p51. The results are consistent with a bifunctional organization of EG2, in which the 118-kDa enzyme is composed of a 51-kDa catalytic domain and a highly antigenic 43-kDa substrate-binding domain. In terms of its domain structure and activity toward cellulose, EG2 is very similar to cellobiohydrolase II of Trichoderma reesei.  相似文献   

9.
Mutations of the tryptophan residues in the tryptophan-track of the N-terminal domain (W33F/Y and W69F/Y) and in the catalytic domain (W245F/Y) of Serratia sp. TU09 Chitinase 60 (CHI60) were constructed, as single and double point substitutions to either phenylalanine or tyrosine. The enzyme-substrate interaction and mode of catalysis, exo/endo-type, of wild type CHI60 and mutant enzymes on soluble (partially N-acetylated chitin), amorphous (colloidal chitin), and crystalline (β-chitin) substrates were studied. All CHI60 mutants exhibited a reduced substrate binding activity on colloidal chitin. CHI60 possesses a dual mode of catalysis with both exo- and endo-type activities allowing the enzyme to work efficiently on various substrate types. CHI60 preferentially uses the endo-type mode on soluble and amorphous substrates and the exo-type mode on crystalline substrate. However, the prevalent mode of hydrolysis mediated by CHI60 is regulated by ionic strength. Slightly elevated ionic strength, 0.1-0.2 M NaCl, which promotes enzyme-substrate interactions, enhances CHI60 hydrolytic activity on amorphous substrate and, interestingly, on partially N-acetylated chitin. High ionic strength, 0.5-2.0 M NaCl, prevents the enzyme from dissociating from amorphous substrate, occupying the enzyme in an enzyme-substrate non-productive complex. However, on crystalline substrates, the activity of CHI60 was only inhibited approximately 50% at high ionic strength, suggesting that the enzyme hydrolyzes crystalline substrates with an exo-type mode processively while remaining tightly bound to the substrate. Moreover, substitution of Trp-33 to either phenylalanine or tyrosine reduced the activity of the enzyme at high ionic strength, suggesting an important role of Trp-33 on enzyme processivity.  相似文献   

10.
The substrate specificity of an endoglucanase (EGB) from Pseudomonas fluorescens subspecies cellulosa was determined. The enzyme was most active against barley beta-glucan, but showed significant activity against amorphous and crystalline cellulose. EGB was purified to homogeneity by affinity chromatography with crystalline cellulose (Avicel). The Mr of the purified enzyme was 50,000, which is in good agreement with the size of EGB deduced from the nucleotide sequence of the celB gene, coding for EGB. The N-terminal region of the mature form of EGB showed strong homology to another endoglucanase and to a xylanase expressed by the same organism; homologous sequences included highly conserved serine-rich regions. Truncated forms of celB, in which the gene sequence encoding the conserved domain had been deleted, directed the synthesis of a functional endoglucanase that did not bind to crystalline cellulose. This indicates that the conserved region of endoglucanases and xylanases expressed by P. fluorescens subsp. cellulosa constitutes a cellulose-binding domain, which is distinct from the active centre. The possible role of this substrate-binding region is discussed.  相似文献   

11.
C T Zimmerle  P P Tung  G M Alter 《Biochemistry》1987,26(26):8535-8541
The iodoacetate-dependent and iodoacetamide-dependent inhibition of cytoplasmic malate dehydrogenase (s-MDH) has been examined. We have confirmed previous reports that iodoacetate inhibits this dimeric enzyme by modifying a single active site methionine per s-MDH subunit. Time courses for the inactivation of the solution-state enzyme with both reagents indicate each s-MDH subunit is modified with equal rapidity in the absence of substrate or cofactor. However, the subunits react with distinctly different rates in the presence of cofactor or cofactor/substrate combinations, indicating some conformational asymmetry between subunits occurs when these ligands are bound. This is consistent with solution-state s-MDH behaving as a cooperative enzyme. Apo and holo crystalline s-MDH are also inhibited by iodoacetic acid. However, subunits of the crystalline enzyme are inhibited with different rates in the presence or absence of active site ligands. This suggests subunit conformations of the dimeric enzyme are not identical in crystalline s-MDH preparations regardless of ligand binding. Furthermore, by the criterion of inhibition rate constants, subunit conformations of the crystalline enzyme are not rigid but are perturbed by ligand binding. Comparisons of inactivation time courses for solution- and crystalline-state s-MDH suggest crystalline s-MDH exhibits at least some of the subunit asymmetry associated with the solution-state enzyme.  相似文献   

12.
The purpose of this study was to investigate the changes induced by a lypolytic enzyme on the surface properties of polyethylene terephthalate (PET). Changes in surface hydrophilicity were monitored by means of water contact angle (WCA) measurements. Fourier Transform Infrared spectroscopy (FTIR) in the Attenuated Total Reflectance mode (ATR) was used to investigate the structural and conformational changes of the ethylene glycol and benzene moieties of PET. Amorphous and crystalline PET membranes were used as substrate. The lipolytic enzyme displayed higher hydrolytic activity towards the amorphous PET substrate, as demonstrated by the decrease of the WCA values. Minor changes were observed on the crystalline PET membrane. The effect of enzyme adhesion was addressed by applying a protease after‐treatment which was able to remove the residual enzyme protein adhering to the surface of PET, as demonstrated by the behavior of WCA values. Significant spectral changes were observed by FTIR–ATR analysis in the spectral regions characteristic of the crystalline and amorphous PET domains. The intensity of the crystalline marker bands increased while that of the amorphous ones decreased. Accordingly, the crystallinity indexes calculated as band intensity ratios (1,341/1,410 cm?1 and 1,120/1,100 cm?1) increased. Finally, the free carboxyl groups formed at the surface of PET by enzyme hydrolysis were esterified with a fluorescent alkyl bromide, 2‐(bromomethyl)naphthalene (BrNP). WCA measurements confirmed that the reaction proceeded effectively. The fluorescence results indicate that the enzymatically treated PET films are more reactive towards BrNP. FTIR analysis showed that the surface of BrNP‐modified PET acquired a more crystalline character. Biotechnol. Bioeng. 2009;103: 845–856. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
Stabilities of native and cross-linked crystalline forms of Streptomyces rubiginosus glucose isomerase were compared in buffer and in 45% glucose/fructose solutions. The cross-linked crystalline form of the enzyme was more stable in the presence of substrate while in a buffer solution the native enzyme was more stable. Inactivation of native enzyme in buffer did not obey first-order kinetics but proceeded with a rapid first phase followed by a stable phase. This stabilization is interpreted to be a result of a conformational change in the protein structure. Inactivation of the native enzyme in buffer was directly related to protein precipitation. In the presence of high substrate concentration, the inactivation was related to browning reactions between the enzyme and the reactive sugar, resulting in soluble sugar-protein complexes.  相似文献   

14.
A study was made of the enzymatic properties of crystalline desoxyribonuclease. The general effect of the crystalline enzyme on its specific substrate, thymus nucleic acid, was found to be essentially the same as described by previous workers for the digestive action of crude preparations of the enzyme. The digestive action consists mainly in splitting thymus nucleic acid into fragments approaching the size of tetranucleotides. The digested nucleic acid is diffusible through collodion or cellophane membranes and is non-precipitable with strong acid, alcohol, or proteins. The digestion of thymus nucleic acid by desoxyribonuclease is accompanied by the liberation of one atom equivalent of free acid per four atoms of nucleic acid phosphorus. Crystalline desoxyribonuclease acts very slowly, if at all, in the absence of magnesium (or manganese) ions. The optimal concentration of magnesium ion required increases with the increase in concentration of the substrate but is independent of the enzyme concentration. The optimal pH range for the action of crystalline desoxyribonuclease is 6.0 to 7.0. A study was made of the kinetics of the digestion of thymus nucleic acid as manifested mainly by the gradual formation of acid-soluble split products. At low concentrations of nucleic acid, the process approximates closely a reaction of the first order, the unimolecular constant being independent of the concentration of desoxyribonuclease in the digestion mixture. At relatively higher concentrations of substrate, however, the initial rate of reaction decreases rapidly with the increase in concentration of substrate, and the reaction as a whole is represented by non-symmetric S-shaped curves apparently too complicated for a simple rational interpretation.  相似文献   

15.
1. Specific proteases which inactivate the apo-proteins of many pyridoxal enzymes were found in skeletal muscle, liver and small intestine of rats. The protease from these three organs were purified and their properties were compared. 2. The purified proteases from liver and skeletal muscle appeared homogeneous on acrylamide gel electrophoresis. Two different proteases were separated from small intestine. A homogeneous, crystalline enzyme was obtained from the muscle layer while enzyme from the mucosa was partially purified. 3. They showed substrate specificity for pyridoxal enzymes. Their pH optima were in an alkaline region. They showed activity with the substrate of chymotrypsin, N-acetyl-L-tyrosine ethyl ester, but not with that of trypsin, p-toluenesulfonyl-L-arginine ethyl ester. They were inhibited by pyridoxal phosphate or pyridoxamine phosphate and seryl residues were involved in their active center. 4. The four enzymes differed in the following characters: (a) molecular weights; (b) patterns of elution from a CM-Sephadex column; (c) rates of inactivation of substrate enzymes; (d) rates of cleavage of N-acetyl-L-tyrosine ethyl ester; (e) reactivities with antiserum against the enzyme from the muscle layer of small intestine; (f) specific activities. 5. The amino acid composition and effect of chemical modifications of the crystalline enzyme from the muscle layer of small intestine were examined to elucidate its active sites and mode of action. Serine and histidine residues were found to be essential for protease activity. A tyrosine residue was also necessary for activity. Modifications of its sulfhydryl group, amino residues and carboxyl group had no effect on its activity.  相似文献   

16.
A hyperthermostable glycoside hydrolase family 51 (GH51) α-l-arabinofuranosidase from Thermotoga petrophila RKU-1 (TpAraF) was cloned, overexpressed, purified and characterized. The recombinant enzyme had optimum activity at pH 6.0 and 70°C with linear α-1,5-linked arabinoheptaose as substrate. The substrate cleavage pattern monitored by capillary zone electrophoresis showed that TpAraF is a classical exo-acting enzyme producing arabinose as its end-product. Far-UV circular dichroism analysis displayed a typical spectrum of α/β barrel proteins analogously observed for other GH51 α-l-arabinofuranosidases. Moreover, TpAraF was crystallized in two crystalline forms, which can be used to determine its crystallographic structure.  相似文献   

17.
The reaction catalyzed by crystalline yeast phosphoglyceric acid mutase is inhibited by the substrate (d-2-phosphoglyceric acid). In order to elucidate the mechanism of this substrate inhibition, detailed investigations have been performed. It is proved that the substrate inhibition in this enzyme reaction is caused by the facts that the coenzyme-binding site on the enzyme is covered by the substrate and the combination of the coenzyme with the enzyme is interfered by the substrate. Consequently, it is concluded that the substrate is a competitive inhibitor of the coenzyme.  相似文献   

18.
19.
Androgenic control of polyamine concentrations in rat epididymis.   总被引:1,自引:0,他引:1  
Unilateral orchidectomy resulted in a significant decrease in tissue content of putrescine and polyamines. However, no differences were detected when the results were expressed in terms of ng g-1 tissue. At 48 h after bilateral orchidectomy, a significant decrease in putrescine content was observed, but spermidine and spermine content were unaffected. The observed decrease in putrescine was prevented by treatment with testosterone propionate, but neither spermidine nor spermine were affected. Bilateral orchidectomy resulted in a significant decrease in the tissue content of putrescine, spermidine and spermine after 7 days. Treatment with testosterone propionate increased the content of putrescine, spermidine and spermine in the epididymis by about 200%, 92% and 34%, respectively. When results were expressed as nmol g-1, a significant decrease after castration in putrescine and spermidine, but not in spermine, was observed. Treatment with testosterone propionate restored putrescine concentration, but had no effect on spermidine and spermine concentrations. In castrated rats treated with testosterone propionate, the anti-androgen flutamide abolished the effect of the androgen on putrescine and spermidine content, but there was no effect on spermine. Acetylputrescine was not detected in the epididymis, while acetylpolyamines were detected at much lower concentrations than polyamines. After bilateral orchidectomy there was a decrease in the tissue content of all acetylpolyamines and an increase in their tissue concentration. The effect of castration on acetylpolyamine content was reversed by testosterone propionate treatment. We conclude that an active synthesis of polyamines occurs in the rat epididymis, and that this process depends upon the androgen environment. Regulation of ornithine decarboxylase activity appears to be the main step that is controlled by androgens.  相似文献   

20.
We used various polyamine derivatives to study the substrate binding site of N 1-acetylpolyamine oxidase (PAO) that was partially purified from rat liver. The substrate activities of acetylpolyamines indicated the presence of two anionic centers corresponding to the 1,3-diaminopropane (1,3-DAP) structure and a hydrophobic region in addition to the cleavage site of the acetamidopropyl group. Based on the results of the inhibitory activities of 1,3-DAP derivatives, we developed a conceptual model of the polyamine binding site of PAO. We used this model to identify a potent competitive inhibitor, N 1,N 7-dihexyl-1,7-diamino-4-azaheptane, and to develop an affinity column, 1,16-diamino4,13-diazahexadecane–linked Sepharose, which was useful for the purification of PAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号