共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Development of methods that will allow exogenous imposition of inheritable gene-specific methylation patterns has potential application in both therapeutics and in basic research. An ongoing approach is the use of targeted DNA methyltransferases, which consist of a fusion between gene-targeted zinc-finger proteins and prokaryotic DNA cytosine methyltransferases. These enzymes however have so far demonstrated significant and unacceptable levels of non-targeted methylation. We now report the development of second-generation targeted methyltransferase enzymes comprising enhanced zinc-finger arrays coupled to methyltransferase mutants that are functionally dominated by their zinc-finger component. Both in vitro plasmid methylation studies and a novel bacterial assay reveal a high degree of target-specific methylation by these enzymes. Furthermore, we demonstrate for the first time transient expression of targeted cytosine methyltransferase in mammalian cells resulting in the specific methylation of a chromosomal locus. Importantly, the resultant methylation pattern is inherited through successive cell divisions. 相似文献
5.
DNA bending induced by six DNA (cytosine-5) methyltransferases was studied using circular permutation gel mobility shift assay. The following bend angles were obtained: M.BspRI (GGm5CC), 46–50°; M.HaeIII (GGm5CC), 40–43°; M.SinI (GGWm5CC), 34–37°; M.Sau96I (GGNm5CC), 52–57°; M.HpaII (Cm5CGG), 30°; and M.HhaI (Gm5CGC), 13°. M.HaeIII was also tested with fragments carrying a methylated binding site, and it was found to induce a 32° bend. A phase-sensitive gel mobility shift assay, using a set of DNA fragments with a sequence-directed bend and a single methyltransferase binding site, indicated that M.HaeIII and M.BspRI bend DNA toward the minor groove. The DNA curvature induced by M.HaeIII contrasts with the lack of DNA bend observed for a covalent M.HaeIII–DNA complex in an earlier X-ray study. Our results and data from other laboratories show a correlation between the bending properties and the recognition specificities of (cytosine-5) methyltransferases: enzymes recognizing a cytosine 3′ to the target cytosine tend to induce greater bends than enzymes with guanine in this position. We suggest that the observed differences indicate different mechanisms employed by (cytosine-5) methyltransferases to stabilize the helix after the target base has flipped out. 相似文献
6.
Vilkaitis G Merkiene E Serva S Weinhold E Klimasauskas S 《The Journal of biological chemistry》2001,276(24):20924-20934
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI. 相似文献
7.
Nobuhiro Sasai Mitsuyoshi Nakao Pierre-Antoine Defossez 《Nucleic acids research》2010,38(15):5015-5022
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist. 相似文献
8.
To enhance DNA cleavage by zinc-finger nucleases (ZFNs), we sandwiched a DNA cleavage enzyme with two artificial zinc-finger proteins (AZPs). Because the DNA between the two AZP-binding sites is cleaved, the AZP-sandwiched nuclease is expected to bind preferentially to a DNA substrate rather than to cleavage products and thereby cleave it with multiple turnovers. To demonstrate the concept, we sandwiched a staphylococcal nuclease (SNase), which cleaves DNA as a monomer, between two three-finger AZPs. The AZP-sandwiched SNase cleaved large amounts of dsDNA site-specifically. Such multiple-turnover cleavage was not observed with nucleases that possess a single AZP. Thus, AZP-sandwiched nucleases will further refine ZFN technology. 相似文献
9.
10.
The symmetry of the responses of the human DNA (cytosine-5)methyltransferase to alternative placements of 5-methylcytosine in model oligodeoxynucleotide duplexes containing unusual structures has been examined. The results of these experiments more clearly define the DNA recognition specificity of the enzyme. A simple three-nucleotide recognition motif within the CG dinucleotide pair can be identified in each enzymatically methylated duplex. The data can be summarized by numbering the four nucleotides in the dinucleotide pair thus: 1 4/2 3. With reference to this numbering scheme, position 1 can be occupied by cytosine or 5-methylcytosine; position 2 can be occupied by guanosine or inosine; position 3, the site of enzymatic methylation, can be occupied only by cytosine; and position 4 can be occupied by guanosine, inosine, O6-methylguanosine, cytosine, adenosine, an abasic site, or the 3' hydroxyl group at the end of a gapped molecule. Replacing the guanosine normally found at position 4 with any of the moieties introduces unusual (non-Watson-Crick) pairing at position 3 and generally enhances methylation of the cytosine at that site. The exceptional facility of the enzyme in actively methylating unusual DNA structures suggests that the evolution of the DNA methyltransferase, and perhaps DNA methylation itself, may be linked to the biological occurrence of unusual DNA structures. 相似文献
11.
The human maintenance DNA (cytosine-5) methyltransferase (hDNMT1) consists of a large N-terminal regulatory domain fused to a catalytic C-terminal domain by randomly repeated Gly-Lys dipeptides. Several N-terminal deletion mutants of hDNMT1 were made, purified, and tested for substrate specificity. Deletion mutants lacking 121, 501, 540, or 580 amino acids from the N-terminus still functioned as DNA methyltransferases, methylated CG sequences, and preferred hemimethylated to unmethylated DNA, as did the full-length hDNMT1. Methylated DNA stimulated methylation spreading on unmethylated CpG sequences for the full-length and the 121 amino acid deletion hDNMT1 equally well but not for the mutants lacking 501, 540, or 580 amino acids, indicating the presence of an allosteric activation determinant between amino acids 121 and 501. Peptides from the N- and C-termini bound methylated DNA independently. Point mutation analysis within the allosteric region revealed that amino acids 284-287 (KKHR) were involved in methylated DNA-mediated allosteric activation. Allosteric activation was reduced in the double point mutant enzymes D25 (K284A and K285A) and D12 (H286A and R287A). Retinoblastoma gene product (Rb), a negative regulator of DNA methylation, bound to the allosteric site of hDNMT1 and inhibited methylation, suggesting Rb may regulate methylation spreading. 相似文献
12.
De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. 总被引:18,自引:2,他引:18 下载免费PDF全文
Recent studies showing a correlation between the levels of DNA (cytosine-5-)-methyltransferase (DNA MTase) enzyme activity and tumorigenicity have implicated this enzyme in the carcinogenic process. Moreover, hypermethylation of CpG island-containing promoters is associated with the inactivation of genes important to tumor initiation and progression. One proposed role for DNA MTase in tumorigenesis is therefore a direct role in the de novo methylation of these otherwise unmethylated CpG islands. In this study, we sought to determine whether increased levels of DNA MTase could directly affect CpG island methylation. A full-length cDNA for human DNA MTase driven by the cytomegalovirus promoter was constitutively expressed in human fibroblasts. Individual clones derived from cells transfected with DNA MTase (HMT) expressed 1- to 50-fold the level of DNA MTase protein and enzyme activity of the parental cell line or clones transfected with the control vector alone (Neo). To determine the effects of DNA MTase overexpression on CpG island methylation, we examined 12 endogenous CpG island loci in the HMT clones. HMT clones expressing > or = 9-fold the parental levels of DNA MTase activity were significantly hypermethylated relative to at least 11 Neo clones at five CpG island loci. In the HMT clones, methylation reached nearly 100% at susceptible CpG island loci with time in culture. In contrast, there was little change in the methylation status in the Neo clones over the same time frame. Taken together, the data indicate that overexpression of DNA MTase can drive the de novo methylation of susceptible CpG island loci, thus providing support for the idea that DNA MTase can contribute to tumor progression through CpG island methylation-mediated gene inactivation. 相似文献
13.
In order to specify the recognition requirements of the human DNA (cytosine-5-)-methyltransferase, two isomeric 48mers were synthesized so as to link a long block of DNA with a shorter complementary block of DNA through a tether consisting of five thymidine residues. These isomeric foldback molecules, differing only in the location of the 5-methyldeoxycytosine, were shown to be unimolecular, to contain a region of duplex DNA, and to contain a region of single-stranded DNA. When used as substrates for the DNA methyltransferase, only one of the isomers was methylated. A comparison of the structures of the two isomers allows us to begin to define the potential sites of interaction between the enzyme and the three nucleotides forming a structural motif consisting of 5-methyldeoxycytosine, its base-paired deoxyguanosine, and a deoxycytosine 5' to the paired deoxyguanosine. 相似文献
14.
15.
Gra?vydas Lukinavi?ius Audron? Lapinait? Giedr? Urbanavi?iūt? Rūta Gerasimait? Saulius Klima?auskas 《Nucleic acids research》2012,40(22):11594-11602
DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA. 相似文献
16.
Structure of mouse DNA (cytosine-5-)-methyltransferase 总被引:1,自引:0,他引:1
E Spiess A Tomassetti P Hernaiz-Driever G P Pfeifer 《European journal of biochemistry》1988,177(1):29-34
DNA (cytosine-5-)-methyltransferase was purified as a single polypeptide (190 kDa by SDS-PAGE) from mouse P815 mastocytoma cells. This enzyme transfers methyl groups to unmethylated as well as to hemimethylated DNA sites with a strong preference for the hemimethylated substrate. A structural analysis of the isolated enzyme by electron microscopical techniques was undertaken. On the basis of the results obtained, we propose a model for the enzyme structure. This model describes the enzyme as a hemi-elliptical globular structure with dimensions of 5.4-6.7 nm for the height h and 10.3-10.8 nm for the diameter d, respectively; this globular structure bears a small appendix at the flat side. A molecular mass of 235-250 kDa is calculated from the measured dimensions. Limited trypsin digestion of the enzyme led to a 160-kDa fragment which preserved the gross morphology of the original material. The possible structure function relationships are discussed. 相似文献
17.
Purification of human DNA (cytosine-5-)-methyltransferase 总被引:7,自引:0,他引:7
We have developed a facile procedure for the purification of DNA methyltransferase activity from human placenta. The procedure avoids the isolation of nuclei and the dialysis and chromatography of large volumes. A purification of 38,000-fold from the whole cell extract has been achieved. The procedure employs ion exchange, affinity, and hydrophobic interaction chromatography coupled with preparative glycerol gradient centrifugation. A protein of 126,000 daltons was found to copurify with the activity and was the major band seen in the most highly purified material after SDS gel electrophoresis. This observation, coupled with an observed sedimentation coefficient of 6.3S, suggests that the enzyme is composed of a single polypeptide chain of this molecular weight. Hemimethylated DNA was found to be the preferred substrate for the enzyme at each stage in the purification. The ratio of the activity of the purified product on hemimethylated to that on unmethylated M13 duplex DNA was about 12 to 1. Thus, the purified activity has the properties postulated for a maintenance methyltransferase. The availability of highly purified human DNA methyltransferase should facilitate many studies on the structure, function, and expression of these activities in both normal and transformed cells. 相似文献
18.
Modifications on histones or on DNA recruit proteins that regulate chromatin function. Here, we use nucleosomes methylated on DNA and on histone H3 in an affinity assay, in conjunction with a SILAC-based proteomic analysis, to identify "crosstalk" between these two distinct classes of modification. Our analysis reveals proteins whose binding to nucleosomes is regulated by methylation of CpGs, H3K4, H3K9, and H3K27 or a combination thereof. We identify the origin recognition complex (ORC), including LRWD1 as a subunit, to be a methylation-sensitive nucleosome interactor that is recruited cooperatively by DNA and histone methylation. Other interactors, such as the lysine demethylase Fbxl11/KDM2A, recognize nucleosomes methylated on histones, but their recruitment is disrupted by DNA methylation. These data establish SILAC nucleosome affinity purifications (SNAP) as a tool for studying the dynamics between different chromatin modifications and provide a modification binding "profile" for proteins regulated by DNA and histone methylation. 相似文献
19.
K Hubrich-Kühner H J Buhk H Wagner H Kr?ger D Simon 《Biochemical and biophysical research communications》1989,160(3):1175-1182
The eukaryotic DNA cytosine-5-methyltransferase (E.C.2.1.1.37) is known to methylate cytosine in DNA mainly, but not exclusively in C-G. In the present study the minor, non-C-G recognition sequences of a rat DNA methyltransferase were analyzed by Maxam-Gilbert sequencing of in vitro methylated SV40 DNA. The enzyme methylates C-A and C-T at a 50-fold lower initial rate than C-G. Methylation of C-C at the 5'C was not observed in the piece of DNA sequenced. The methylation of C-A is very low in the trinucleotides ACA and CAC, the other C-A containing trinucleotides in DNA are much better methylacceptors. C-T was found methylated predominantly in the sequences CCTAA, ACTAA, and ACTGT. A comparison of the activity with different substrates is in favour of the enzyme making its recognition in the major groove of the DNA. 相似文献
20.
Smith SS 《Journal of molecular biology》2000,302(1):1-7
In 1985 Walter Gilbert challenged members of the DNA methylation community assembled at a National Institutes of Health meeting organized by Giulio Cantoni and Ahron Razin with the following words: "The most exciting aspect about the methyl groups on DNA is the thought that they might provide a locally inherited change in a DNA structure. However, for that to be interesting, those changes have to be different in different cells. Furthermore, the alterations in methylation have to be freely imposable and have to be maintained. It is not yet clear that all these properties are true. So I don't think one will find that methylation ever is one of the primary, top-level controls on gene expression."In essence, Gilbert's conjecture, that DNA methylation is not one of the top-level controls on gene expression, assumes that evidence in favor of both of its testable propositions will not be obtained. Evidence for the first proposition, that alterations in methylation status associated with gene-expression states have to be maintained, was already available in 1985 and has been strengthened by a number of very recent experiments. However, the extensive effort to obtain evidence for the second proposition, that alterations in methylation status be freely imposable, has not been successful in its original intent. The effort has, on the other hand, resulted in the emergence of new functions for 5-methylcytosine and the cytosine methyltransferases in eukaryotic DNA repair, recombination and chromosome stability. 相似文献