首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Monovalent ion and calcium ion fluxes in sarcoplasmic reticulum   总被引:7,自引:0,他引:7  
Summary The ion permeability of sarcoplasmic reticulum vesicles from skeletal and heart muscle has been characterized by radioisotope flux, osmotic and membrane potential measurements, and by incorporating vesicles into planar phospholipid bilayers. The sarcoplasmic reticulum membrane is uniquely permeable to various biologically relevant monovalent ions. At least two and possibly three separate passive permeation systems for monovalent ions have been identified: 1) a K+, Na+ channel, 2) an anion channel, and 3) a H+ (OH) permeable pathway which may or may not be synonymous with the anion channel. A possible physiological function of these monovalent ion permeation systems is to permit rapid movement of K+, Na+, H+ and Cl across the membrane to counter electrogenic Ca2+ fluxes during Ca2+ release and uptake by sacroplasmic reticulum.  相似文献   

2.
Activation of potassium ion transport in mitochondria by cadmium ion   总被引:2,自引:0,他引:2  
Low levels of Cd2+ (1-5 microM) produce rapid swelling of mitochondria, which is respiration-dependent and uncoupler-sensitive. No cation requirement is apparent, since the swelling occurs in a medium containing only sucrose and the respiratory substrate. The swelling is inhibited by ruthenium red, suggesting that this effect of Cd2+ requires its entry into mitochondria. In medium containing 9 mM K+, addition of Cd2+ along with ruthenium red increases the rate of K+ influx threefold. In the presence of K+, Rb+ or Li+, but not of Na+, addition of Cd2+ produces first efflux of H+ into the medium followed by discharge of the pH gradient or uncoupling. Only the latter effect is inhibited by ruthenium red, showing that the efflux and influx of H+ are independent reactions. The H+ efflux appears to be an antiport response to the induced K+ entry. Its activation by Cd2+ is similar to the known effect of p-chloromercuriphenyl sulfonate. The H+ influx or uncoupling appears to result from binding of Cd2+ to some matrix-facing membrane site, perhaps the dithiol group on coupling factor B, and may relate to apparent permeability changes associated Cd2+-induced swelling.  相似文献   

3.
4.
The steady-state regulation of intracellular levels of essential ions and ionic gradients is critical for almost all functions within a cell. Thus, it is not surprising to find that ions have been shown to play an important role in numerous parasitic processes, such as invasion, development and possibly drug resistance mechanisms. Live cell imaging has become a widespread technique to visualize and quantify several of these processes, including pH and Ca2+ homeostasis, in an effort to better understand the biology and physiology of cells. This is now also the case for many human pathogens. The aim of this review is to emphasize the importance of this technique and provide an overview of what we have learned so far, using the malaria parasite Plasmodium falciparum as a paradigm.  相似文献   

5.
6.
Metal ions affect ion channels either by blocking the current or by modifying the gating. In the present review we analyse the effects on the gating of voltage-gated channels. We show that the effects can be understood in terms of three main mechanisms. Mechanism A assumes screening of fixed surface charges. Mechanism B assumes binding to fixed charges and an associated electrostatic modification of the voltage sensor. Mechanism C assumes binding and an associated non electrostatic modification of the gating. To quantify the non-electrostatic effect we introduced a slowing factor, A. A fourth mechanism (D) is binding to the pore with a consequent pore block, and could be a special case of Mechanisms B or C. A further classification considers whether the metal ion affects a single site or multiple sites. Analysing the properties of these mechanisms and the vast number of studies of metal ion effects on different voltage-gated on channels we conclude that group 2 ions mainly affect channels by classical screening (a version of Mechanism A). The transition metals and the Zn group ions mainly bind to the channel and electrostatically modify the gating (Mechanism B), causing larger shifts of the steady-state parameters than the group 2 ions, but also different shifts of activation and deactivation curves. The lanthanides mainly bind to the channel and both electrostatically and non-electrostatically modify the gating (Mechanisms B and C). With the exception of the ether-à-go-go-like channels, most channel types show remarkably similar ion-specific sensitivities.  相似文献   

7.
Advancing proteomics with ion/ion chemistry   总被引:2,自引:0,他引:2  
Good DM  Coon JJ 《BioTechniques》2006,40(6):783-789
Mass spectrometers, instruments that use electric and/or magnetic fields to measure a gas-phase ion's mass-to-charge ratio (m/z), are used in a wide variety of applications--with the field having a reputation for providing good sensitivity and high-informing power. Protein analysis (proteomics) is a relatively recent affair for the field and was enabled in the late 1980s with the advent of biomolecule ionization methods such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). Today, the area of protein analysis garners considerable attention from many in the mass spectrometry (MS) field; given the myriad of possible protein forms and their broad dynamic range (abundance) in the cell, the analytical challenge is paramount. Here we discuss a developing technology--ion/ion chemical reactions--that promises to transform how we think about and conduct protein sequence analysis via MS.  相似文献   

8.
A bioremediation process to remove Co(2+) from aqueous solution is investigated in this study using a magnetic resonance imaging (MRI) protocol to rapidly obtain multiple 2D spatially resolved Co(2+) ion concentration maps. The MRI technique is described in detail and its ability to determine the evolution in both axial and radial concentration profiles demonstrated, from which total column capacity can be determined. The final ion exchange column design allows operation in the 'plug flow' regime, hence making use of its full capacity before breakthrough. Conventional techniques for such process optimization are either restricted to the analysis of the exchanger outlet, which provides no information on the spatial heterogeneity of the system, or are invasive and need a variety of sample points to obtain 1D concentration information. To the best of our knowledge, our results represent the first concentration maps describing the bioremediation of metal ion contaminated water.  相似文献   

9.
The recent crystal structure of the prokaryotic inwardly rectifying potassium channel, KirBac1.1, revealed for the first time the structure of a K+ channel in the closed state plus the location of the activation gate. Comparison of the KirBac1.1 structure with other known ion channels reveals a number of common structural features. These common characteristics include the formation of the ion conduction pathway at the interface between adjacent subunits, non-fixed charges forming part of the ion pathway, electrostatic sinks drawing ions into the channel, helix dipoles, and hydrophobic gates that ultimately prevent ion movement. This review describes in detail common structural themes present in ion channels.Presented at the Biophysical Society Meeting on Ion channels – from structure to disease held in May 2003, Rennes, France  相似文献   

10.
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.  相似文献   

11.
Teleost fish often live in an environment in which osmoregulatory mechanisms are critical for survival and largely unknown in larval fish. The effects of a single important marine ion (K+) on survival and ion regulation of larval Gulf killifish, an estuarine, euryhaline teleost, were determined. A four-week study was completed in four separate recirculating systems with newly hatched larvae. Salinity in all four systems was maintained between 9.5 and 10‰. Two systems were maintained using crystal salt (99.6% NaCl) with K+ supplementation (1.31 ± 0.04 mmol/L and 2.06 ± 0.04 mmol/L K+; mean ± SEM), one was maintained with crystal salt and no K+ supplementation (0.33 ± 0.05 mmol/L K+), the fourth system was maintained using a standard marine mix salt (2.96 ± 0.04 mmol/L K+), the salt mix also included standard ranges of other ions such as calcium and magnesium. Larvae were sampled throughout the experiment for dry mass, Na+/K+-ATPase (NKA) activity, whole body ion composition, relative gene expression (NKA, Na+/K+/2Cl? cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR)), and immunocytochemistry staining for NKA, NKCC, and CFTR. Larvae stocked into water with no K+ supplementation resulted in 100% mortality within 24 h. Mortality and dry mass were significantly influenced by K+ concentration (P  0.05). No differences were observed among treatment groups for NKA activity. At 1 dph NKA mRNA expression was higher in the 0.3 mmol [K+] group than in other treatment groups and at 7 dph differences in intestinal NKA and CFTR staining were observed. These data indicate that the rearing of larval Gulf killifish may be possible in ion deficient water utilizing specific ion supplementation.  相似文献   

12.
The metabolism of cancer cells differs substantially from normal cells, including ion transport. Although this phenomenon has been long recognized, ion transporters have not been viewed as suitable therapeutic targets. However, the acidic pH values present in tumours which are well outside of normal limits are now becoming recognized as an important therapeutic target. Carbonic anhydrase IX (CAIX) is fundamental to tumour pH regulation. CAIX is commonly expressed in cancer, but lowly expressed in normal tissues and that presents an attractive target. Here, we discuss the possibilities of exploiting the acidic, hypoxic tumour environment as possible target for therapy. Additionally, clinical experience with CAIX targeting in cancer patients is discussed.  相似文献   

13.
Aluminum ion in biological systems   总被引:13,自引:0,他引:13  
  相似文献   

14.
15.
16.
Previously, we described a model which treats ion channel gating as a discrete diffusion problem. In the case of agonist-activated channels at high agonist concentration, the model predicts that the closed lifetime probability density function from single channel recording approximates a power law with an exponent of -3/2 (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988a. Proc. Natl. Acad. Sci. USA. 85: 1503-1507). This prediction is consistent with distributions derived from a number of ligand-gated channels at high agonist concentration (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988b. Biophys. J. 54: 1165-1168.) but does not describe the behavior of ion channels at low activator concentrations. We examine here an extension of this model to include an agonist binding step. This extended model is consistent with the closed time distributions generated from the BC3H-1 nicotinic acetylcholine receptor for agonist concentrations varying over three orders of magnitude.  相似文献   

17.
18.
In barley (Hordeum vulgare L.) leaves, differential ion accumulation commonly results in inorganic phosphate (Pi) being confined to the mesophyll and Ca(2+) to the epidermis, with preferential epidermal accumulation of Cl(-), Na(+), and some other ions. The pattern was confirmed in this study for major inorganic anions and cations by analysis of barley leaf protoplasts. The work focused on the extent to which differences in plasma membrane ion transport processes underlie these observations. Ion transport across the plasma membrane of barley epidermal and mesophyll protoplasts was investigated electrophysiologically (by microelectrode impalement and patch clamping) and radiometrically. Data from both approaches suggested that similar types of ion-selective channels and membrane transporters, which catalyze the transport of Ca(2+), K(+), Na(+), and Pi, exist in the plasma membrane of the two cell types. In general, the simple presence or absence of ion transporters could not explain cell-type-specific differences in ion accumulation. However, patch-clamp data suggested that differential regulation of instantaneously activating ion channels in the plasma membrane could explain the preferential accumulation of Na(+) in the epidermis.  相似文献   

19.
The acid-sensing ion channel (ASIC) subunits ASIC1, ASIC2, and ASIC3 are members of the amiloride-sensitive Na+ channel/degenerin family of ion channels. They form proton-gated channels that are expressed in the central nervous system and in sensory neurons, where they are thought to play an important role in pain accompanying tissue acidosis. A splice variant of ASIC2, ASIC2b, is not active on its own but modifies the properties of ASIC3. In particular, whereas most members of the amiloride-sensitive Na+ channel/degenerin family are highly selective for Na+ over K+, ASIC3/ASIC2b heteromultimers show a nonselective component. Chimeras of the two splice variants allowed identification of a 9-amino acid region preceding the first transmembrane (TM) domain (pre-TM1) of ASIC2 that is involved in ion permeation and is critical for Na+ selectivity. Three amino acids in this region (Ile-19, Phe-20, and Thr-25) appear to be particularly important, because channels mutated at these residues discriminate poorly between Na+ and K+. In addition, the pH dependences of the activity of the F20S and T25K mutants are changed as compared with that of wild-type ASIC2. A corresponding ASIC3 mutant (T26K) also has modified Na+ selectivity. Our results suggest that the pre-TM1 region of ASICs participates in the ion pore.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号