首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of mitochondria during early oogenesis remains largely unknown in zebrafish. We used three mitochondrial probes (Mito Tracker Red CMXRos, Mito Tracker Green FM, and JC-1) to stain early zebrafish oocyte mitochondria, and confocal microscopy to analyze mitochondrial aggregation and distribution. By using fluorescence recovery after photobleaching (FRAP), we traced mitochondrial movement. The microtubule assembly inhibitor nocodazole and microfilament inhibitor cytochalasin B (CB) were used to analyze the role of microtubules and microfilaments on mitochondrial movement. By using the dual emission probe, JC-1, and oxidative phosphorylation uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), we determined the distribution of active and inactive (low-active) mitochondria. Green/red fluorescence ratios of different sublocations in different oocyte groups stained by JC-1 were detected in merged (green and red) images. Our results showed that mitochondria exhibited a unique distribution pattern in early zebrafish oocytes. They tended to aggregate into large clusters in early stage I oocytes, but in a threadlike state in latter stage I oocytes. We detected a lower density mitochondrial area and a higher density mitochondrial area on opposite sides of the germinal vesicle. The green/red fluorescence ratios in different sublocations in normal oocytes were about 1:1. This implies that active mitochondria were distributed in all sublocations. FCCP treatment caused significant increases in the ratios. CB and nocodazole treatment caused an increase of the ratios in clusters and mitochondrial cloud, but not in dispersed areas. Mitochondria in different sublocations underwent fast dynamic movement. Inhibition or disruption of microtubules or microfilaments resulted in even faster mitochondrial free movement.  相似文献   

2.
The growth of loach oocytes is accompanied by an increase in the density of mitochondria. Simultaneously with the increase in density an acceleration of 14C-valine incorporation into mitochondrial proteins takes place. It is assumed that the increase in mitochondria density during oogenesis is due to an increase in the amount of membrane material per unit of mitochondria weight.  相似文献   

3.
Mitochondria play a vital role during oocyte maturation, fertilization, and embryo development. In this study, confocal microscopy with the mitochondrial membrane potential-sensitive dye JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide) was used to investigate mitochondria distribution and activity of stage III zebrafish ovarian follicles. To support the mitochondrial origin of the fluorescence obtained by JC-1, a second mitochondrial probe, MitoTracker Green FM, was used. Cryo-scanning and transmission electron microscopy were also used to validate the distribution and localization of mitochondria obtained by mitochondrial staining. The mitochondrial probes were unable to penetrate the oocyte, and as a result it was not possible to observe stained mitochondria in the oocyte cytoplasm. However, mitochondrial staining of the granulosa cell layer surrounding the stage III zebrafish oocyte exhibited a contiguous aggregation pattern of mitochondria. Cryo-scanning electron microscopy studies also showed the oocyte surface to be covered by polygonal patterns of ridges of the same dimensions as the distributional arrangement of mitochondria in the granulosa cells. Though the results suggested the need for defolliculation to assess mitochondrial distribution and activity in the stage III zebrafish oocyte cytoplasm, the findings of this study will contribute to our understanding of oogenesis and folliculogenesis processes in fish.  相似文献   

4.
The role of mitochondria as central determinants of development competence of oocytes and preimplantation stage embryos is considered in the context of the diverse activities these organelles have in normal cell function. Stage- and cell-cycle-specific mitochondrial translocations and redistributions are described with respect to mechanisms of cytoplasmic remodeling that may establish domains of autonomous regulation of mitochondrial function and activity during early development. The functions of mitochondria as intracellular signaling elements, as regulators of signaling pathways, and oxygen sensors in differentiated cells are suggested to have similar capacities during mammalian oogenesis and early embryogenesis. Questions concerning the numerical size of the oocyte mitochondrial complement, the energy required to support normal preovulatory oogenesis and preimplantation embryogenesis, and the regulation of mitochondrial activity by extrinsic and intrinsic factors are addressed with respect the potential they may have for new investigational approaches to study the origin of the differential developmental competence of human oocytes and preimplantation stage embryos.  相似文献   

5.
Washed and purified rat- or mouse-liver mitochondria exhibiting high membrane integrity and metabolic activity were studied by flow cytometry. The electrophoretic accumulation/redistribution of cationic lipophilic probes, rhodamine 123, safranine O and a cyanine derivative, 3,3'-dihexyloxadicarbocyanine iodide, during the energization process was studied and was consistent with the generation of a negative internal membrane potential. An exception to this was nonylacridine orange which spontaneously bound to the mitochondrial membrane by hydrophobic interactions via its hydrocarbon chain. Energized purified mitochondria stained with potentiometric dyes exhibited both higher fluorescence and population homogeneity than the non-energized or deenergized (nigericin plus valinomycin) mitochondria. By contrast, under non-energized or deenergized conditions, the mitochondrial population exhibited fluorescence intensity heterogeneity related to the residual membrane potential; two subpopulations were evident, one of low fluorescence which may be related to the autofluorescence of the mitochondria (plus non-specific dye binding) and a second population which exhibited high fluorescence. Flow cytometry of the unpurified, simply washed, rat-liver mitochondria stained with rhodamine 123, a classically used dye, provided evidence of their heterogeneity in terms of light-scattering properties and membrane-potential-related fluorescence. One third of the washed mitochondria were found to be non-functional by such assays. The fluorescence of purified rat-liver mitochondria due to the membrane potential built up by endogenous substrates indicates heterogeneity of the mitochondrial population with respect to levels of endogenous substrates. The low-angle light scattering increases upon energization and provides some original information about the shape and modification of the inner mitochondrial conformation accompanying the energization. The heterogeneity of the rat liver mitochondrial population, from a structural, metabolic (existence of endogenous substrates) and functional (active and non-active mitochondrial population dispersion) point of view could thus be demonstrated by flow-cytometry analysis. Two animal models were examined with regard to the alteration of the mitochondrial membrane potential under the effects of drugs (rat-liver mitochondria), and the effects of ammonium toxicity (mouse-liver mitochondria). These results are promising and open new perspectives in the study of mitochondriopathies.  相似文献   

6.
We have identified three distinct groups of mitochondria in normal living pancreatic acinar cells, located (i) in the peripheral basolateral region close to the plasma membrane, (ii) around the nucleus and (iii) in the periphery of the granular region separating the granules from the basolateral area. Three-dimensional reconstruction of confocal slices showed that the perigranular mitochondria form a barrier surrounding the whole of the granular region. Cytosolic Ca(2+) oscillations initiated in the granular area triggered mitochondrial Ca(2+) uptake mainly in the perigranular area. The most intensive uptake occurred in the mitochondria close to the apical plasma membrane. Store-operated Ca(2+) influx through the basolateral membrane caused preferential Ca(2+) uptake into sub-plasmalemmal mitochondria. The perinuclear mitochondria were activated specifically by local uncaging of Ca(2+) in the nucleus. These mitochondria could isolate nuclear and cytosolic Ca(2+) signalling. Photobleaching experiments indicated that different groups of mitochondria were not luminally connected. The three mitochondrial groups are activated independently by specific spatiotemporal patterns of cytosolic Ca(2+) signals and can therefore participate in the local regulation of Ca(2+) homeostasis and energy supply.  相似文献   

7.
Density separated trout erythrocytes, using a discontinuous Percoll gradient, yielded three distinct subfractions (top, middle and bottom) since older cells are characterized by increasing density. Cells from each subfraction were incubated with mitochondria-specific fluorescent probe Mitotracker and JC-1 in order to assess mitochondrial mass and membrane potential by means of cytofluorimetric analysis, confocal microscopy and subsequent computer-aided image analysis allowing a detailed investigation at single cell level. Both cytofluorimetric data and image analysis revealed changes in size and redistribution of mitochondria starting from the light fraction to the bottom. In particular in young erythrocytes small mitochondria were detected localized exclusively around the nucleus in a crown-like shape, the middle fraction revealed enlarged mitochondria partially scattered throughout the cytosol, whereas the last fraction represented again mitochondria with reduced size being distinctly dispersed throughout the cytosol in the cells. Concerning membrane potential considerations, our study revealed a dramatic decrease of DeltaPsi(m) in the bottom layer cell mitochondria compared to the top and unusual membrane potential increase of a subpopulation of enlarged mitochondria. DeltapH was also investigated in the three fractions by pretreating the cells with nigericin, allowing to confirm a mitochondrial energetic impairment in older cells.  相似文献   

8.
The structural changes of mitochondria that occur during oogenesis and early embryogenesis in the rabbit have been examined with the electron microscope. Mitochondria of oogonia are both elongate and oval and contain a variable number of cristae which may or may not traverse the longitudinal axis of the organelle. When oogonia differentiate into oocytes, mitochondria become spheroidal and their cristae are sparse when compared with those found in the ellipsoidal organelles of concomitantly maturing follicle cells. As differentiation proceeds, the cristae of the mitochondria display varied configurations. For example, many display an arch-like arrangement in several regions of the organelle whereas others contain a pair of concentric membranes closely associated with limiting membrane of the mitochondrion. Mitochondria of stages from the fertilized egg to the morula possess the same internal structure as those of young oocytes. As the morula differentiates into a blastocyst there is a gradual increase in the size of the mitochondria and an increase in the number of cristae. We believe that the number and modifications of cristae indicate stages of mitochondriogenesis and the level of enzymatic activity in which this organelle is engaged during oogenesis and early embryogenesis.  相似文献   

9.
10.
Mitochondrial distribution and microtubule organization were examined in porcine oocytes after parthenogenesis, fertilization and somatic cell nuclear transfer (SCNT). Our results revealed that mitochondria are translocated from the oocyte's cortex to the perinuclear area by microtubules that either constitute the sperm aster in in vitro-fertilized (IVF) oocytes or originate from the donor cell centrosomes in SCNT oocytes. The ability to translocate mitochondria to the perinuclear area was lower in SCNT oocytes than in IVF oocytes. Sperm-induced activation rather than electrical activation of SCNT oocytes as well as the presence of the oocyte spindle enhanced perinuclear mitochondrial association with reconstructed nuclei, while removal of the oocyte spindle prior to sperm penetration decreased mitochondrial association with male pronuclei without having an apparent effect on microtubules. We conclude that factors derived from spermatozoa and oocyte spindles may affect the ability of zygotic microtubules to translocate mitochondria after IVF and SCNT in porcine oocytes. Mitochondrial association with pronuclei was positively related with embryo development after IVF. The reduced mitochondrial association with nuclei in SCNT oocytes may be one of the reasons for the low cloning efficiency which could be corrected by adding yet to be identified, sperm-derived factors that are normally present during physiological fertilization.  相似文献   

11.
A U Larkman 《Tissue & cell》1984,16(3):393-404
The appearance and arrangement of the mitochondria during all stages of oocyte growth in the sea anemone Actinia fragacea (Cnidaria: Anthozoa) have been examined by electron microscopy. In small oocytes, the mitochondria are generally squat, with a dense matrix and numerous cristae, although a proportion may show an unusual arrangement of prismatic cristae. During early oogenesis, the mitochondria tend to be arranged in aggregates rather than randomly scattered, and may be associated with nuage material. With the onset of vitellogenesis, a large mitochondrial aggregate forms next to the nucleus. During early vitellogenesis this aggregate enlarges and comes to resemble the mitochondrial clouds found in some amphibian oocytes. Within the cloud, many mitochondria appear to be highly elongate and irregular in shape. The cloud begins to fragment and disperse midway through vitellogenesis at about the time when cortical granules appear. In fully grown oocytes, some mitochondria may have a much less dense matrix and fewer cristae than the remainder, which may be related to their state of activity.  相似文献   

12.
We have investigated changes that occur in mitochondria obtained from the livers of rats that had been maintained on a high protein diet (80% casein instead of 20%) for 6 months. Liver homogenates were separated by centrifugation into a mitochondrial fraction, a nuclear fraction and the supernatant fluid of the nuclear fraction (nuclear wash). Rhodamine-123 was used to selectively stain mitochondria depending upon their membrane potential. The stained organelles were processed through a flow cytometer where the fluorescent stains were excited by the 488 nm wavelength of a laser and the resultant fluorescence signals analysed. After 6 months on a high protein diet, mitochondria displayed an increase in the fluorescence associated with rhodamine-123 uptake in both mitochondrial and nuclear wash fractions, while mitochondrial fluorescence in the nuclear fraction showed a heterogeneous distribution. This was interpreted as an increase in membrane potential in most of the liver mitochondria under these nutritional conditions, with a certain degree of heterogeneity. These functional changes may be correlated with morphological alterations previously reported and show the usefulness of flow cytometry for biochemical analysis of isolated mitochondria.  相似文献   

13.
The aim of this study was to evaluate mitochondrial distribution during in vitro maturation (at 0, 15, 20, and 27 hr of IVM) and fertilization of prepubertal goat oocytes compared to mitochondrial distribution of ovulated and in vitro fertilized oocytes from adult goats. Oocytes from prepubertal goats were recovered from a slaughterhouse and were matured in M199 with hormones and serum for 27 hr. Ovulated oocytes were collected from gonadotrophin-treated Murciana goats. Frozen-thawed spermatozoa were selected by centrifugation in Percoll gradient and were capacitated in DMH with 20% steer serum for 1 hr. Ovulated and IVM-oocytes were inseminated in DMH medium with steer serum and calcium lactate for 20 hr. Oocytes and presumptive zygotes were stained with Mitotraker Green FM and observed under a confocal laser scanning microscope. Ultrastructural morphology of oocytes and presumptive zygotes were analyzed by transmission electron microscopy (TEM). Prepubertal goat oocytes at germinal vesicle stage (GV) presented mitochondria localized in the cortical and perinuclear region. IVM-oocytes at metaphase II presented mitochondria peripheral polarized to the region opposite were the metaphase spindle is positioned and within the polar body. Ovulated oocytes presented peripheral mitochondria distribution and mitochondrial aggregation around the MII spindle. At 20 hr post-insemination, mitochondria were distributed around the two synchronous pronuclei (2PN rpar; in zygotes ovulated oocytes whereas in prepubertal 2PN-zygotes mitochondria presented a peripheral polarized distribution. Images by TEM detected that immature prepubertal goat oocytes that are less electrodense and present fewer cristae than in vitro matured prepubertal goat oocytes; these are characterized by being associated to swollen vesicles. Mol. Reprod. Dev. 73: 617-626, 2006 (c) 2006 Wiley-Liss, Inc.  相似文献   

14.
The mitochondrial cloud is a prominent mass in the cytoplasm of previtellogenic oocytes of Xenopus laevis. It is shown here that the cloud contains both mitochondria and electron-dense granulofibrillar material (GFM). Using a combination of light microscopical, fluorescence, time-lapse filming, and electron microscopical techniques, the ontogeny of these components is reported and their fate is studied. It was found that the cloud is stationary in previtellogenic stages and fragments into islands of mitochondria and GFM during stage II (using the staging system of J. N. Dumont [1972) J. Morphol. 136, 153-180). These islands become localized in the peripheral cytoplasm at one pole of the stage III oocyte. By studying successive stages, GFM was followed through oogenesis and it was found localized only at the vegetal pole of stage IV and V oocytes. Furthermore, it was found that it bears a striking resemblance in position, appearance, and associations with mitochondria to the "germinal granules" of unfertilized eggs. Germinal granules have been shown by others to become incorporated into germ-line cells. It is concluded that the GFM is the precursor of this material and that the mitochondrial cloud is the site of its accumulation and localization in the previtellogenic oocyte.  相似文献   

15.
BACKGROUND: Sperm-derived mitochondria are integrated into the oocyte at fertilization but seem to vanish during the early cleavage phase. The developmental potential of pre-implantation embryos seems to be closely related to their ability to induce degeneration of these mitochondria, but the mechanisms underlying their loss of function are not yet understood. This study focuses on the fate of paternal mitochondria in pre-implantation embryos. METHODS: Stimulation, collection and in vitro culture of oocytes from Callithrix jacchus, allows the study of the destiny of paternal mitochondria by utilizing immunostaining of pre-implantation embryos, fluorescence and laserscanning microscopy. Live pre-implantation embryos were stained with a fluorescence indicator reflecting mitochondrial membrane potential. RESULTS: Evidence indicating the loss of mitochondrial function was not found nor that apoptosis pathways were involved in the disappearance of paternally derived mitochondria. CONCLUSIONS: These findings may have implications for mitochondrially inherited diseases and could lead to new strategies for improving assisted reproduction.  相似文献   

16.
An abundant form of DNA damage caused by reactive oxygen species is 8-oxo-7,8-dihydroguanine for which the base excision repair protein 8-oxoguanine-DNA glycosylase 1 (OGG1) is a major repair enzyme. To assess the location and intracellular activity of the OGG1 protein in response to oxidative stress, we have utilised a fluorescence–quench molecular beacon switch containing a 8-oxo-dG:C base pair and a fluorescent and quencher molecule at opposite ends of a hairpin oligonucleotide. Oxidative stress was induced by treatment with potassium bromate. Flow cytometry demonstrated a concentration-dependent increase in the activity of OGG1 that was detected by the fluorescence produced when the oligonucleotide was cleaved in the cells treated with potassium bromate. This signal is highly specific and not detectable in OGG1 knock out cells. Induction of OGG1 activity is not a result of induction of OGG1 gene expression as assessed by qPCR suggesting a role for protein stabilisation or increased OGG1 catalytic activity. High resolution confocal microscopy pinpointed the location of the fluorescent molecular beacon in live cells to perinuclear regions that were identified as mitochondria by co-staining with mitotracker dye. There is no evidence of cut beacon within the nuclear compartment of the cell. Control experiments with a positive control beacon (G:C base pair and lacking the DAB quencher) did not result in mitochondrial localisation of fluorescence signal indicating that the dye does not accumulate in mitochondria independent of OGG1 activity. Furthermore, faint nuclear staining was apparent confirming that the beacon structure is able to enter the nucleus. In conclusion, these data indicate that the mitochondria are the major site for OGG1 repair activity under conditions of oxidative stress.  相似文献   

17.
Oogenesis within the hologonic ovary of the trichuroid nematode, Trichuris muris, was observed by light and electron microscopy. Early germinal stages in the form of oogonia and young primary oocytes were characterised by a high nuclear-cytoplasmic ratio, numerous ribosomes and several mitochondrial clusters. Previtellogenic primary oocytes contained a prominent nucleus with a nuclear envelope punctuated by pores. They also contained increased amounts of granular endoplasmic reticulum (GER), often arranged as annulate lamellae, several Golgi complexes and limited amounts of lipid. The appearance of three types of cytoplasmic inclusion, in the form of lipid, dense yolk granules and reticulate granules, indicated the onset of vitellogenesis. At this stage of oogenesis, all three types were distributed throughout the ooplasm. The possible role of the granules is discussed. During passage along the oviduct the oocyte was coated by an additional unit membrane and associated fibrillar layer external to the oolemma. It is suggested that this may be synthesised by the oocyte.  相似文献   

18.
Xu Y  Liu JZ  Xia C 《生理学报》2008,60(1):59-64
本文旨在通过观察棕榈酸对模拟高原低氧大鼠离体脑线粒体解耦联蛋白(uncoupling proteins,UCPs)活性的影响及脑线粒体质子漏与膜电位的改变,探讨UCPs在介导游离脂肪酸对低氧时线粒体氧化磷酸化功能改变中的作用.将SpragueDawley大鼠随机分为对照组、急性低氧组和慢性低氧组.低氧大鼠于低压舱内模拟海拔5 000 m高原23 h/d作低氧暴露,分别连续低氧3 d和30 d.用差速密度梯度离心法提取脑线粒体,[3H-GTP法测定UCPs含量与活性,TPMP 电极与Clark氧电极结合法测量线粒体质子漏,罗丹明123荧光法测定线粒体膜电位.结果显示,低氧使脑线粒体内UCPs含量与活性升高、质子漏增加、线粒体膜电位降低;同时,低氧暴露降低脑线粒体对棕榈酸的反应性,UCPs活性的改变率低于对照组,且线粒体UCPs含量、质子漏、膜电位变化率亦出现相同趋势.线粒体质子漏与反映UCPs活性的Kd值呈线性负相关(P<0.01 r=-0.906),与反映UCPs含量的Bmax呈线性正相关(P<0.01,r=0.856),与膜电位呈线性负相关(P<0.01,r=-0.880).以上结果提示,低氧导致的脑线粒体质子漏增加及膜电位降低与线粒体内UCPs活性升高有关,同时低氧暴露能降低脑线粒体对棕榈酸的反应性,提示在高原低氧环境下,游离脂肪酸升高在维持线粒体能量代谢中起着自身保护和调节机制.  相似文献   

19.
Abstract. We have investigated changes that occur in mitochondria obtained from the livers of rats that had been maintained on a high protein diet (80% casein instead of 20%) for 6 months. Liver homogenates were separated by centrifugation into a mitochondrial fraction, a nuclear fraction and the supernatant fluid of the nuclear fraction (nuclear wash). Rhodamine-123 was used to selectively stain mitochondria depending upon their membrane. potential. the stained organelles were processed through a flow cytometer where the fluorescent stains were excited by the 488 nm wavelength of a laser and the resultant fluorescence signals analysed. After 6 months on a high protein diet, mitochondria displayed an increase in the fluorescence associated with rhodamine-123 uptake in both mitochondrial and nuclear wash fractions, while mitochondrial fluorescence in the nuclear fraction showed a heterogeneous distribution. This was interpreted as an increase in membrane potential in most of the liver mitochondria under these nutritional conditions, with a certain degree of heterogeneity. These functional changes may be correlated with morphological alterations previously reported and show the usefulness of flow cytometry for biochemical analysis of isolated mitochondria.  相似文献   

20.
The changes in distribution and density of mitochondria and the level of mitochondrial RNA during Drosophila oogenesis were studied simultaneously in the 3 cell types ie follicle cells, nurse cells and oocyte, making up the egg chamber. Up to stage 6, mitochondrial density (mitochondrial and cellular areas ratio) was elevated and increased similarly in both follicle and nurse cells. Thereafter the mitochondrial density of follicle cells continued to increase and that of the nurse cells declined markedly while the nurse cell mitochondria assembled in dense groups and decreased in size. This can be related to a transfer of nurse cell cytoplasm, including mitochondria, to the oocyte. In the oocyte from stage 4 to stage 7 we observed a significant decrease of the mitochondrial density due to the absence of mitochondrial biogenesis. Then the cytoplasm transfer caused mitochondrial density to increase up to the level found in the nurse cells at the end of oogenesis. The mature oocyte contains enough mitochondria to supply 15,000 somatic cells. Our results strongly suggest that the variations in size, distribution and density of mitochondria relate to the particular energetic requirements of the different cell types during the first half of oogenesis. Later they relate to the developmental requirements of the nurse cells and the oocyte, in particular the storage of mitochondria in the oocyte. The level of mitochondrial RNA was studied through in situ hybridization. Throughout oogenesis the follicle and nurse cell RNA evolved similarly. Up to stage 9, there was no change in RNA densities in these cells, suggesting a correlation with the cell volume and/or the nuclear DNA content. Thereafter the cellular RNA concentration declined rapidly. In the oocyte the RNA concentration evolved differently especially from stage 10 to the end, the RNA density being stabilized. This can be related to the injection of nurse cell mitochondria, followed by their assignment to reserve status. Our results suggest that the mt RNA density is under extramitochondrial control mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号