首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human CD34+ HLA-DR- bone marrow cells constitute a phenotypically homogeneous population of quiescent cells. More than 97% of CD34+ HLA-DR- cells reside in the G0/G1 phase of the cell cycle. The in vitro effects of two cytokines, IL-1 alpha and IL-3, alone or in combination, on the viability, cell cycle status and acquisition of HLA-DR by this cell population were examined. Cell viability was preserved in cultures receiving cytokines, but declined steadily in cultures deprived of exogenous IL. Over a period of 4 days, IL-3 progressively induced the expression of HLA-DR although driving corresponding numbers of cells into S and G2 + M. Although IL-1 alpha induced the expression of HLA-DR, it was not as effective as IL-3 in promoting the exit of these cells from G0/G1. Combinations of IL-1 alpha and IL-3, however, exerted an even greater effect on promoting both HLA-DR expression and entry of cells into active phases of the cell cycle. Simultaneous measurement of HLA-DR expression and cell cycle status in response to IL-1 alpha and IL-3 indicated that the majority of de novo expression of HLA-DR occurred in cells that remained in G0/G1. CD34+ HLA-DR- cells cultured with IL-1 alpha and IL-3 but arrested in G0/G1 by hydroxyurea were still capable of expressing HLA-DR, demonstrating that the acquisition of HLA-DR was independent of the entry of these cells into active phases of the cell cycle. These data indicate that the survival, HLA-DR expression, and cell cycle status of human CD34+ HLA-DR- bone marrow cells are governed by regulatory cytokines such as IL-1 alpha and IL-3. In addition, the entry of these cells into active phases of the cell cycle does not seem to be a prerequisite for the expression of HLA-DR, nor does it seem that the acquisition of HLA-DR by hematopoietic progenitor cells is a marker of cells entering the S phase of the cell cycle.  相似文献   

2.
3.
The role of the host cell cycle in determining the efficiency of infection with amphotropically packaged retroviral vectors was investigated in T lymphocytes and in fibroblasts. For T lymphocytes, the efficiency of infection with a retroviral vector was dependent on the cell cycle distribution of cells in culture at the time of exposure to the vector. When cultures enriched in the G0-G1 phase of the cell cycle (by serum starvation, aphidicolin treatment, or centrifugal elutriation) were exposed to retroviral vectors, the infection efficiency was severalfold lower than that in similar cultures enriched in the S, G2, and M phases. For fibroblasts, the efficiency of infection was not cell cycle dependent. These findings are relevant for studies with retrovirus-mediated gene transfer into hematopoietic tissues.  相似文献   

4.
An improved BrdU-Hoechst flow assay was applied to cell kinetic studies of human lymphocyte cultures during a 24-96 hr interval after PHA stimulation. The assay shows that the duration of the initial lag phase and the proportions of noncycling cells increase as a function of donor age, whereas the rates of transition from each cell cycle compartment to the next decrease. Cell cycle arrest occurs in the first S and G2 phase after stimulation of lymphocytes from a 75-year-old donor but not from younger donors. The data are consistent with several models of cell cycle kinetics, so long as these models are modified to include a fraction of noncycling cells in each cell cycle compartment.  相似文献   

5.
Mechanisms of serotonin-induced lymphocyte proliferation inhibition   总被引:1,自引:0,他引:1  
When human peripheral blood lymphocytes were stimulated with phytohemagglutinin in the presence of serotonin, inhibition of [3H]thymidine incorporation occurred, the most marked inhibition occurring at high (10(-3)M) serotonin concentrations. This effect could not be reversed by the addition of Interleukin 2 (IL-2)-containing supernatants. Cytofluorometric analysis showed that virtually all of the cells remained in the G0 phase (unactivated) at 24 hr while some of the cells entered the G1a and G1b phases of the cell cycle by 42 hr. The cellular production of IL-2 was not affected by serotonin, as supernatants of treated cultures contained essentially the same IL-2 titers as did control cultures. Serotonin seemed to primarily affect cell activation and had little or no effect on proliferating cells. This was further confirmed by the lack of effects of serotonin on a variety of established proliferating lymphocyte, macrophage, and fibroblast cell lines. By contrast, dose-dependent inhibition of IL-2-dependent CTLL cells occurred. Serotonin was not toxic even at 10(-3) M concentrations. A marked decrease in IL-2 receptors and a change in their distribution on responder cells was seen when treated cultures were examined with the anti-Tac monoclonal antibody. At 24 hr this effect was contrastingly not seen for the OKT-8 marker, although a slight decrease in OKT-4-positive cells was seen. Serotonin thus produced an inhibition of lectin-stimulated lymphocyte proliferation via a mechanism independent of IL-2 production, and caused a decrease in the expression and distribution of IL-2 receptors on the surface of responder cells.  相似文献   

6.
BrdU-Hoechst flow cytometry was employed to study the proliferation kinetics of blood lymphocytes from patients with Fanconi anemia (FA). Compared to controls, untreated FA lymphocytes show normal response to PHA stimulation, normal G0/G1 exit rates, and normal first S-phase durations. The G2 phase of the first cell cycle, however, is severely prolonged, and 24% of the recruited population become arrested during the first chromosome cycle (S, G2/M phases). The delay suffered during G2 appears to be compensated in part by a subsequent G1 phase duration that is unusually short for postnatal human cells (3.7 +/- 0.5 hrs). In analogy to what has been observed in other cell systems after experimental delays of the chromosome cycle, we therefore postulate that at least some FA cells enter their second growth phase without prior completion of the delayed chromosome cycle. Renewed replication would ensue in such cells without prior passing through mitosis and cytokinesis, leading to endoreduplication, which is a frequent finding in the FA syndrome.  相似文献   

7.
An EBNA- human B lymphoma cell line, B104, was established. B104 cells express IgD as well as IgM on their surface, which is thought to be a basic characteristic of mature B cells. The growth of B104 cells was inhibited by treatment with a panel of anti-IgM antibodies. Cell cycle analyses revealed that the transition of B104 cells from the G2/M to the G0/G1 phase of the cell cycle was markedly inhibited by treatment with anti-IgM antibodies. Progression of B104 cells to the M phase of the cell cycle was found to be suppressed in the presence of anti-IgM antibodies. In contrast, both the entrance of G0/G1 phase cells into the S phase and the progression of S phase cells to the G2/M phase of the cell cycle did not seem to be inhibited significantly by treatment with anti-IgM antibodies. These results indicate that the mechanism of the inhibition of growth of B104 cells by anti-IgM antibodies is blockage of the transition from the G2 to the M phase of the cell cycle. In contrast to anti-IgM antibodies, anti-IgD antibodies could not cause growth inhibition of B104 cells at all. B cell growth factors such as IL-4 and IL-6 had no effect on the inhibition of growth of B104 cells by anti-IgM antibody. IFN-alpha and -beta, which have no B cell growth factor activity, did increase the number of cells that survived the treatment with anti-IgM antibodies. B104 is an excellent experimental model for the study of the mechanism of signal transduction through sIg as well as the functional difference between sIgM and sIgD.  相似文献   

8.
The purpose of this investigation is to determine whether the levels of cyclooxygenase-2 (COX-2) expression are cell cycle dependent. We used a serum-starved human foreskin fibroblast model to determine changes in COX-2 mRNA, protein, and promoter activity in response to stimulation with interleukin-1b (IL-1b) and phorbol 12-myristate 13-acetate (PMA) at G0, G1, S and G2/M phases of the cell cycle. IL-1b (1 ng/ml) and PMA (100 nM) induced robust COX-2 expression in the G0 cells, and the level of COX-2 expression declined progressively after the cells had entered the cell cycle. The COX-2 mRNA level at G1, S and G2/M phases of the cell cycle was 76%, 46%, and 30% of that at G0, respectively. A 5-flanking promoter fragment of COX-2 constructed into a luciferase expression vector was transfected into cells. The promoter activity in response to PMA stimulation was significantly higher in G0 than in S phase cells. These results imply that G0 cells are the key players in inflammation and other COX-2-dependent pathophysiological processes. When the cells are in the proliferative phase, COX-2 inducibility becomes restrained probably by an endogenous control mechanism to avoid COX-2 mediated oxidative DNA damage.  相似文献   

9.
We have studied the cell cycle of resting T lymphocytes from long-term (LT) cultures following stimulation with phytohemagglutinin (PHA) and recombinant Interleukin 2 (IL-2). We examined the kinetics of entry into S phase by autoradiography, the accumulation of cellular RNA by microfluorometric techniques, and ultrastructural morphology by electron microscopy. In addition, we examined the expression at the mRNA level of six cell cycle-dependent growth-regulated genes (c-fos, c-myc, KC-1, JE-3, vimentin, and histone H3). We show that T lymphocytes of LT cultures respond differently to mitogenic stimulation than the T lymphocytes of freshly isolated peripheral blood mononuclear cell cultures. At the ultrastructural, biochemical, and molecular levels, resting T lymphocytes of LT cultures can be distinguished from physiological (G0) lymphocytes of peripheral blood.  相似文献   

10.
A method is described for quantitative study of the flux of cells through the cell cycle phases in in vitro systems perturbed by chemicals, such as chemotherapeutic agents. The method utilizes cell count and the flow cytometric technique of bromodeoxyuridine (BrdUrd) labeling, according to an optimized strategy. Cells are exposed to BrdUrd during the last minutes of drug treatment and fixed for analysis at 0, 1/3Ts, 2/3Ts, Ts, and Tc + TG1 recovery times, where Ts, TG1, Tc are the mean durations of phases S and G1 and of the whole cycle of control cells. As an example of application of the proposed procedure, a kinetic study of the effect of 1-(2-chloroethyl)-1-nitrosourea (CNU) on the L1210 cell cycle is described. Simple data analysis, requiring only a pocket calculator, showed that cells in phases G1 and G2M at the end of a 1 h treatment with 1 microgram/ml CNU were fully able to leave these phases but were destined to remain blocked in the following G2M phase (G1 for a minority of them). We also found that cells initially in S phase were slightly delayed in completing their S phase and that 50% of them remained temporarily blocked in the subsequent G2M phase, irrespective of their position in the S phase.  相似文献   

11.
Progressive in vitro culturing of interleukin-3 (IL-3) dependent normal murine mastocytes (PB-3) resulted in a variant cell line (PB-1) able to grow without exogenous IL-3 and which was tumorogenic in syngenic mice. Bivariate flow cytometry was used to evaluate the c-myc protein and DNA content of PB-3 and PB-1 cells. The c-myc protein was detected by specific monoclonal antibodies. Kinetic characteristics of PB-3 and PB-1 cell lines, namely, the duration of the G1, S and G2 + M cell cycle phases were also evaluated using the bromodeoxyuridine (BrdU) pulse-chase method and BrdU/DNA flow cytometry. Levels of c-myc protein in PB-1 cells were about two-fold higher than those of PB-3 cells in all cell cycle phases. Mean duration of the cell cycle (Tc) was 15.3 h for PB-3 cells and 12.4 h for PB-1 cells. Shortening in Tc for the transformed cells was due to a decrease of nearly 30% in mean duration of the G1 phase (from 8 h to 5.7 h). No significant differences were found in the duration of the S and G2 + M phases. These results indicate that acquired IL-3 independency in vitro and tumorogenicity of PB-1 cells were accompanied by a doubling of c-myc protein level and by a parallel shortening, or bypass, of the regulatory events within the G1 phase of the cell cycle.  相似文献   

12.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

13.
The transactivator protein Tax of human T-cell leukemia virus type I plays an important role in the development of adult T-cell leukemia probably through modulation of growth regulatory molecules including p16(INK4a). The molecular mechanism of leukemogenesis induced by Tax has yet to be elucidated. We analyzed Tax function in the cell cycle using an interleukin-2 (IL-2)-dependent human T-cell line (Kit 225) that can undergo cell cycle arrest at G(0)/G(1) phase by deprivation of IL-2. Tax activated endogenous E2F activity in IL-2-starved Kit 225 cells, resulting in activation of E2F site-carrying promoters of genes involved in G(1) to S phase transition in a cell type-dependent and p16(INK4a)-independent manner. The ability of Tax mutants to activate E2F coincided with that to activate nuclear factors kappaB and AT, sole expression of which, however, did not activate E2F, suggesting involvement of another pathway in activation of E2F. Introduction of Tax by a recombinant adenovirus induced cell cycle progression to G(2)/M phase in resting Kit 225 cells accompanied by endogenous cyclin D2 gene expression. Similarly, Tax-induced cell cycle progression was seen with peripheral blood lymphocytes prestimulated with phytohemagglutinin. Analyses with Tax mutants did not allow Tax-induced cell cycle progression to be differentiated from Tax-dependent activation of E2F, suggesting that Tax induces cell cycle progression presumably through activation of E2F. Nevertheless, infection with an E2F1-expressing virus, which is sufficient for induction of S phase in serum-starved fibroblasts, was not sufficient for either E2F activation or cell cycle progression in IL-2-starved Kit 225 cells, implying differential regulation of E2F activation and cell cycle progression in T-cells that is activated by Tax.  相似文献   

14.
The mammalian homologue of the cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a p34cdc2 cyclin-dependent kinase that regulates the cell cycle of a wide variety of cell types. Resting murine T lymphocytes contained no detectable p34cdc2 protein, histone kinase activity, or specific mRNA for the cdc2 gene. Activation of the T cells by immobilized anti-CD3 resulted in the expression of specific mRNA late in the G1 phase of the cell cycle, and p34cdc2 protein was detectable at or near G1/S. At this point in the cell cycle, the protein was phosphorylated at tyrosine and displayed no H1 histone kinase activity. As the cells progressed through the cycle, the amount of specific mRNA and p34cdc2 increased, and H1 histone kinase activity was detectable when the cells were blocked at G2/M by nocodazole. The activation of T cells by phorbol dibutyrate induced the expression of IL-2R but failed to induce the synthesis of IL-2 or the expression of cdc2-specific mRNA. Under these conditions, the activated cells failed to enter the S phase of the cell cycle. Because the presence of IL-2 added exogenously during activation by phorbol dibutyrate resulted in the expression of cdc2-specific mRNA and progression through the cell cycle, either IL-2 or the interaction with IL-2R may be involved in the expression of cdc2 and regulation of the G1/S transition.  相似文献   

15.
刘佳  杨晓彤  杨庆尧 《生物磁学》2011,(20):3826-3829
目的:探究云芝糖)Ik(PSP)对人急性淋巴母细胞白血病Molt-4细胞周期的影响。方法:采用流式细胞术BrdU/DNA双染法获得各时相细胞分布状况和细胞周期的动力学参数。结果:0.1mg/mlPSP处理12h后,G2/M期细胞百分比由对照组的11.09%减少至3.69%。DNA合成时间由12.10h延长至108.40h。24h处理组中,S期细胞百分比由对照组的43.29%增加至67.26%,而G0/G1期和G2/M期细胞百分比均减少,G0/G1期细胞百分比由对照组的37.47%减少至27.43%,G2/M期细胞百分比由对照组的19.24%降低至5.31%。DNA合成时间更是由11.95h延长至114.52h。结论:PSP对人急性淋巴母细胞白血病Molt-4细胞周期的阻滞作用在于S期.该作用与DNA合成抑制有关。  相似文献   

16.
The question of whether lymphocytes which have once been activated and have completed one or several cell cycle(s) can return to the G0 phase and stay ready for a new activation (G0-G1 transition), rather than simply die, was investigated. To do so interleukin 2 (IL-2) was removed from cultures of continuously proliferating human T lymphocytes and the formation of resting (G0) cells was measured. Kinetic analyses in freshly prepared peripheral blood lymphocytes (PBL) revealed that the onset of detectable RNA synthesis and the appearance of structures binding the anti-Tac antibody occurred simultaneously. This allowed the expansion of the definition of G0 T lymphocytes as cells having a low RNA (and DNA) content, and no Tac antigen. When cultured human T cells proliferating continuously by means of IL-2 were characterized in terms of their distribution in the cell cycle, 7 days after the initial PHA stimulation, it could be demonstrated that very few cells were in the G0 phase, supporting the concept of direct S/G2/M-G1 transition. However, when IL-2 was removed from the cultures, the [3H]thymidine incorporation per 104 cells and correspondingly the number of cells in the S/G2/M and G1 phases were reduced drastically and during the following 72-hr period, the number of G0 cells increased markedly. Restimulation of such in vitro formed G0 cells, under conditions permitting observation of their shift from the G0 to G0 phase, demonstrated that most cells could respond normally. Based on these observations, it was concluded that IL-2 not only ensures T-lymphocyte survival and proliferation, but IL-2 starvation induces many continuously proliferating T lymphocytes to stop cycling and to return to the G0 phase of the cell cycle where they remain functional.  相似文献   

17.
Human gamma-globulin (HGG)-specific mouse Th1 clones exposed to tolerogenic signals provided by HGG-pulsed paraformaldehyde-fixed splenocytes (HGG-FAPC) were analyzed for antigen-induced progression through the early phases of the cell cycle. Exposure of Th1 clones to HGG-FAPC in primary cultures inhibits the ability of the clones to synthesize DNA in response to HGG and normal APC in secondary cultures. The Th1 clones in these secondary cultures were found to be blocked in G1a phase as evidenced by cell cycle analysis and by reduced numbers of cells expressing high levels of IL-2R and TfR. This cell cycle blockade of Th1 cells was not observed if the secondary cultures were stimulated with IL-2-containing Con A CM instead of antigen. These data suggest that in our system the inhibition in antigen-induced cell cycle progression associated with Th1 tolerance induction occurs at the G1a/G1b phase transition.  相似文献   

18.
The current study investigated the relationship of the cell cycle phase (as G(0)/G(1), S, and G(2)/M) and cytotoxicity (as sub-G(1) DNA) to determine whether alterations in cell replication were associated with organophosphate (OP) compound induced cytotoxicity. Results demonstrated that, overall, OP compound--induced cell cycle changes were variable and depended on the OP compound, exposure concentration, and temporal relationship to cytotoxicity. Noncytotoxic OP compound treatments substantially decreased the percentage of cells in S phase of the cell cycle when compared to controls. A corresponding increase was seen in the percent of cells in G(0)/G(1) phase of the cell cycle. In the precytotoxic interval of exposure, most cytotoxic OP compound treatments substantially decreased the percentage of cells in G(2)/M phase of the cell cycle. Corresponding increases were seen primarily in G(0)/G(1) phase cells. Effects on cells in S stage of the cell cycle varied with the OP compound. In the during cytotoxic interval of exposure, most cytotoxic OP compound treatments substantially increased the percentage of cells in S phase of the cell cycle. A corresponding decrease in the percent of cells in G(0)/G(1) stage of the cell cycle was observed. Furthermore, treatments either increased or decreased the percentage of cells in G(2)/M phase of the cell cycle when compared to controls, with decreases more likely with the most cytotoxic OP compound exposures. Overall, the in vitro data suggest that exposure to OP compounds can alter the cell cycle status of SH-SY5Y neuroblastoma cells depending on compound, concentration, and interval from initial exposure. Changes in cell cycle, however, did not differentiate between OP compounds that are known for their ability to acutely inhibit acetylcholinesterase versus those inducing type I and type II delayed neurotoxicity.  相似文献   

19.
tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC.  相似文献   

20.
The modulation of membrane Ia on human B lymphocytes   总被引:2,自引:0,他引:2  
Using flow cytometry techniques, changes in surface Ia (DR and DS) expression on human B lymphocytes were correlated with changes in the cell cycle following stimulation with anti-mu. The effect of interleukin (IL)-1, IL-2, B-cell growth factor (BCGF), and interferons on Ia expression on resting B cells was also examined. A population of resting B lymphocytes was cultured in vitro with 100 micrograms/ml of anti-mu and immunofluorescently stained for DR and DS at various times following stimulation. Detectable increases in DR and DS expression were found within 8 hr, and the major increases (twofold and fourfold) in DR and DS expression occurred over the next 48 hr. Using cell cycle inhibitors and propidium iodide staining, it was demonstrated that the enhanced DR and DS expression following anti-mu stimulation began during G0 to G1 transition and increased as the cells progressed through G1 phase. During S and G2/M phases, there were minimal further increases in surface Ia. Although prolonged exposure of B cells to anti-mu was required for cellular activation, cell size enlargement, and progression into S phase, a brief exposure to anti-mu, insufficient for cellular activation, markedly enhanced Ia expression. Thus anti-mu-stimulated resting human B lymphocytes rapidly increase their surface Ia expression. This increase occurs predominantly prior to entrance into S phase and can occur in the absence of significant cellular activation. Interferons have been reported to modulate surface Ia expression on a human lymphoid cell line and on monocytes and supernatants with BCGF activity to enhance surface Ia expression on murine B cells; however, neither alpha-interferon, gamma-interferon, IL-1, IL-2, nor BCGF modified surface DR expression on normal resting human B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号