共查询到20条相似文献,搜索用时 15 毫秒
1.
Akihira Ohtoshi Ichiko Nishijima Monica J Justice Richard R Behringer 《Mechanisms of development》2002,110(1-2):241-244
To identify novel homeobox genes expressed during mouse embryogenesis, we searched the databases and found a novel mouse paired-like homeobox gene, Dmbx1(diencephalon/mesencephalon-expressed brain homeobox gene 1), that is also conserved in zebrafish and human. Linkage analysis mapped mouse Dmbx1 to the mid-portion of chromosome 4 that is the homologous gene cluster region of human chromosome 1, where human DMBX1 is located. Both mouse and human Dmbx1/DMBX1 have four coding exons and their gene structures are conserved. Whole-mount in situ hybridization revealed that Dmbx1 expression is detected in 7.5-9.5 dpc mouse embryos. At 7.5 and 8.5 dpc, Dmbx1 is expressed in a sub-region of the anterior head folds. At 9.5 dpc, expression is observed in the caudal diencephalon as well as in the mesencephalon and is restricted to the neuroepithelium. Expression in adult tissues was detected in brain, stomach, and testis. Dmbx1 provides a unique marker of the developing anterior nervous system and should provide a useful molecular resource to elucidate the mechanisms that pattern the vertebrate brain. 相似文献
2.
We have identified and cloned a novel type of homeobox gene that is composed of two homeodomains and is expressed in the Drosophila endoderm. Mutant analysis reveals that its activity is required at the foregut/midgut boundary for the development of the proventriculus. This organ regulates food passage from the foregut into the midgut and forms by the infolding of ectoderm and endoderm-derived tissues. The endodermal outer wall structure of the proventriculus is collapsed in the mutants leading to a failure of the ectodermal part to invaginate and build a functional multilayered organ. Lack-of-function and gain-of-function experiments show that the expression of this homeobox gene in the proventriculus endoderm is induced in response to Wingless activity emanating from the ectoderm/endoderm boundary whereas its expression in the central midgut is controlled by Dpp and Wingless signalling emanating from the overlying visceral mesoderm. 相似文献
3.
The genetic cascade that governs left-right (L-R) specification is starting to be elucidated. In the mouse, the lateral asymmetry of the body axis is revealed first by the asymmetric expression of nodal, lefty2 and pitx2 in the left lateral plate mesoderm of the neurulating embryo. Here we describe a novel gene, rotatin, essential for the correct expression of the key L-R specification genes nodal, lefty and Pitx2. Embryos deficient in rotatin show also randomized heart looping and delayed neural tube closure, and fail to undergo the critical morphogenetic step of axial rotation. The amino acid sequence deduced from the cDNA is predicted to contain at least three transmembrane domains. Our results show a novel key player in the genetic cascade that determines L-R specification, and suggest a causal link between this process and axial rotation. 相似文献
4.
D J Opstelten R Vogels B Robert E Kalkhoven F Zwartkruis L de Laaf O H Destrée J Deschamps K A Lawson F Meijlink 《Mechanisms of development》1991,34(1):29-41
The murine S8 gene, originally identified by Kongsuwan et al. [EMBO J. 7(1988)2131-2138] encodes a homeodomain which resembles those of the paired family. We studied the expression pattern during mid-gestation embryogenesis of S8 by in situ hybridization. Expression was detected locally in craniofacial mesenchyme, in the limb, the heart and the somites and sclerotomes all along the axis, and was absent from the central and peripheral nervous system, splanchnopleure, and endodermal derivatives. This pattern differs considerably from that of most previously described homeobox containing genes. By genetic analysis, the gene was located on chromosome 2, about 20 cM from the HOX-4 cluster. 相似文献
5.
6.
Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. 总被引:20,自引:0,他引:20
A F Candia J Hu J Crosby P A Lalley D Noden J H Nadeau C V Wright 《Development (Cambridge, England)》1992,116(4):1123-1136
We have isolated two mouse genes, Mox-1 and Mox-2 that, by sequence, genomic structure and expression pattern, define a novel homeobox gene family probably involved in mesodermal regionalization and somitic differentiation. Mox-1 is genetically linked to the keratin and Hox-2 genes of chromosome 11, while Mox-2 maps to chromosome 12. At primitive streak stages (approximately 7.0 days post coitum), Mox-1 is expressed in mesoderm lying posterior of the future primordial head and heart. It is not expressed in neural tissue, ectoderm, or endoderm. Mox-1 expression may therefore define an extensive 'posterior' domain of embryonic mesoderm before, or at the earliest stages of, patterning of the mesoderm and neuroectoderm by the Hox cluster genes. Between 7.5 and 9.5 days post coitum, Mox-1 is expressed in presomitic mesoderm, epithelial and differentiating somites (dermatome, myotome and sclerotome) and in lateral plate mesoderm. In the body of midgestation embryos, Mox-1 signal is restricted to loose undifferentiated mesenchyme. Mox-1 signal is also prominent over the mesenchyme of the heart cushions and truncus arteriosus, which arises from epithelial-mesenchymal transformation and over a limited number of craniofacial foci of neural crest-derived mesenchyme that are associated with muscle attachment sites. The expression profile of Mox-2 is similar to, but different from, that of Mox-1. For example, Mox-2 is apparently not expressed before somites form, is then expressed over the entire epithelial somite, but during somitic differentiation, Mox-2 signal rapidly becomes restricted to sclerotomal derivatives. The expression patterns of these genes suggest regulatory roles for Mox-1 and Mox-2 in the initial anterior-posterior regionalization of vertebrate embryonic mesoderm and, in addition, in somite specification and differentiation. 相似文献
7.
8.
Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos 总被引:2,自引:0,他引:2
BACKGROUND: Consistent left-right (LR) asymmetry is a fascinating problem in developmental and evolutionary biology. Conservation of early LR patterning steps among vertebrates as well as involvement of nonprotein small-molecule messengers are very poorly understood. Serotonin (5-HT) is a key neurotransmitter with crucial roles in physiology and cognition. We tested the hypothesis that LR patterning required prenervous serotonin signaling and characterized the 5-HT pathway in chick and frog embryos. RESULTS: A pharmacological screen implicated endogenous signaling through receptors R3 and R4 and the activity of monoamine oxidase (MAO) in the establishment of correct sidedness of asymmetric gene expression and of the viscera in Xenopus embryos. HPLC and immunohistochemistry analysis indicates that Xenopus eggs contain a maternal supply of serotonin that is progressively degraded during cleavage stages. Serotonin's dynamic localization in frog embryos requires gap junctional communication and H,K-ATPase function. Microinjection of loss- and gain-of-function constructs into the right ventral blastomere randomizes asymmetry. In chick embryos, R3 and R4 activity is upstream of the asymmetry of Sonic hedgehog expression. MAO is asymmetrically expressed in the node. CONCLUSIONS: Serotonin is present in very early chick and frog embryos. 5-HT pathway function is required for normal asymmetry and is upstream of asymmetric gene expression. The microinjection data reveal asymmetry existing in frog embryos by the 4-cell stage and suggest novel intracellular 5-HT mechanisms. These functional and localization data identify a novel role for the neurotransmitter serotonin and implicate prenervous serotonergic signaling as an obligate aspect of very early left-right patterning conserved to two vertebrate species. 相似文献
9.
Homeobox genes play a key role in specifying the segmented body plan of Drosophila, and recent work suggests that at least several homeobox genes may play a regulatory role during vertebrate limb morphogenesis. We have used degenerate oligonucleotide primers from highly conserved domains in the homeobox motif to amplify homeobox gene segments from chick embryo limb bud cDNAs using the polymerase chain reaction. Expression of a large number of homeobox genes (at least 17) is detected using this approach. One of these genes contains a novel homeobox loosely related to the Drosophila Abdominal B class, and was further analyzed by determining its complete coding sequence and evaluating its expression during embryogenesis by in situ hybridization. Based on sequence and expression patterns, we have designated this gene as Ghox 4.7 and believe that it is the chick homologue of the murine Hox 4.7 gene (formerly Hox 5.6). Ghox 4.7 is expressed primarily in limb buds during development and shows a striking spatial restriction to the posterior zone of the limb bud, suggesting a role in specifying anterior-posterior pattern formation. In chick, this gene also displays differences in expression between wing and leg buds, raising the possibility that it may participate in specifying limb-type identity. 相似文献
10.
11.
HEX: a novel homeobox gene expressed during haematopoiesis and conserved between mouse and human. 总被引:6,自引:0,他引:6 下载免费PDF全文
We describe the cloning of a novel homeodomain-containing gene, which is highly conserved between mouse and human. The human cDNA was initially isolated from human haematopoietic tissue and denoted HEX (haematopoietically expressed homeobox). Sequence analysis of the coding sequences from mouse and the partial cDNA from human shows that the homeodomain is most closely related to those of the HIx and HOX11 proteins. The HEX gene is present as a single copy in the human genome. Analysis of murine genomic DNA shows, in addition to an intron-containing gene homologous to HEX, the presence of a processed copy of the gene which has arisen within the last few million years. Analysis of human and murine haematopoietic cells and cell lines, revealed expression of the HEX gene in multipotential progenitors, as well as cells of the B-lymphocyte and myeloid lineages. However HEX was not expressed in T-lymphocytes or erythroid cells. This pattern of HEX gene expression suggests that it may play a role in haematopoietic differentiation. 相似文献
12.
Differential antero-posterior expression of two proteins encoded by a homeobox gene in Xenopus and mouse embryos. 总被引:1,自引:4,他引:1 下载免费PDF全文
The X.laevis XlHbox 1 gene uses two functional promoters to produce a short and a long protein, both containing the same homeodomain. In this report we use specific antibodies to localize both proteins in frog embryos. The antibodies also recognize the homologous proteins in mouse embryos. In both mammalian and amphibian embryos, expression of the long protein starts more posteriorly than that of the short protein. This difference in spatial expression applies to the nervous system, the segmented mesoderm and the internal organs. This suggests that each promoter from this gene has precisely restricted regions of expression along the anterior-posterior axis of the embryo. Because the long and short proteins share a common DNA-binding specificity but differ by an 82 amino acid domain, their differential distribution may have distinct developmental consequences. 相似文献
13.
The homeobrain (hbn) gene is a new paired-like homeobox gene which is expressed in the embryonic brain and the ventral nerve cord. Expression of homeobrain initiates during the blastoderm stage in the anterior dorsal head primordia and the gene is persistently expressed in these cells which form parts of the brain during later embryonic stages. An additional weaker expression pattern is detected in cells of the ventral nerve cord from stage 11 on. The homeodomain in the Homeobrain protein is most similar to the Drosophila proteins DRx, Aristaless and Munster. In addition, the localized brain expression patterns of homeobrain and DRx resemble each other. Two other homeobox genes, orthopedia and DRx are clustered in the 57B region along with homeobrain. The current evidence indicates that homeobrain, DRx and orthopedia form a homeobox gene cluster in which all the members are expressed in specific embryonic brain subregions. 相似文献
14.
Members of the NK homeobox family have been widely conserved during evolution. Here we describe the sequence and expression of a novel Drosophila NK-2 homeobox gene, named scarecrow (scro), which shows considerable homology to vertebrate Nkx-2.1. During embryogenesis, scro expression is initially observed in the pharyngeal primordia and later maintained in the pharynx. During band germ retraction, scro expression appears in two bilateral clusters of procephalic neuroblasts that give rise to distinct neuronal clusters in the brain. In addition, scro expression is observed in segmental clusters of neuronal precursors in the ventral nerve cord. In larval stages, scro expression occurs in portions of the optic lobe regions. These observations indicate that scro and vertebrate Nkx2.1 share similarities both in terms of their sequence and their expression patterns. 相似文献
15.
16.
Takahashi T Holland PW Cohn MJ Shimizu K Kurokawa M Hirai H 《Development genes and evolution》2002,212(6):293-297
We report the cDNA sequence and expression of a mouse homeobox gene, Dmbx1, from the PRD class and comparison to its human orthologue. The gene defines a new homeobox gene family, Dmbx, phylogenetically distinct from the Ptx, Alx, Prx Otx, Gsc, Otp and Pax gene families. The Dmbx1 gene is expressed in the developing mouse diencephalon, midbrain and hindbrain, and has dynamic expression during forelimb and hindlimb development. Unusually for homeobox genes, there is no orthologue in the Drosophila or Caenorhabditis genomes; we argue this reflects secondary loss. 相似文献
17.
18.
19.
20.
Posterior expression of a homeobox gene in early Xenopus embryos 总被引:14,自引:0,他引:14