首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate.  相似文献   

2.
A novel amperometric phenol sensor was constructed by immobilizing tyrosinase in a titania sol-gel matrix. The tyrosinase entrapped sol-gel film was obtained with a vapor deposition method, which simplified the traditional sol-gel process and avoided the shrinkage and cracking of conventional sol-gel-derived glasses. This matrix provided a microenvironment for retaining the native structure and activity of the entrapped enzyme and a very low mass transport barrier to the enzyme substrates. Phenol could be oxidized by dissolving oxygen in presence of immobilized tyrosinase to form a detectable product, which was determined at -150 mV without any mediator. The phenol sensor exhibited a fast response (less than 5 s) and sensitivity as high as 103 microA/mM, which resulted from the porous structure and high enzyme loading of the sol-gel matrix. The linear range for phenol determination was from 1.2x10(-7) to 2.6x10(-4) M with a detection limit of 1.0x10(-7) M. The apparent Michaelis-Menten constant of the encapsulated tyrosinase was calculated to be (0.29+/-0.02) mM. The stability of the biosensor was also evaluated.  相似文献   

3.
An optical biosensor based on glutamate dehydrogenase (GLDH) immobilized in a chitosan film for the determination of ammonium in water samples is described. The biosensor film was deposited on a glass slide via a spin-coating method. The ammonium was measured based on β-nicotinamide adenine dinucleotide (NADH) oxidation in the presence of α-ketoglutaric acid at a wavelength of 340 nm. The biosensor showed optimum activity at pH 8. The optimum chitosan concentrations and enzyme loading were found to be at 2% (w/v) and 0.08 mg, respectively. Optimum concentrations of NADH and α-ketoglutaric acid both were obtained at 0.15 mM. A linear response of the biosensor was obtained in the ammonium concentration range of 0.005 to 0.5 mM with a detection limit of 0.005 mM. The reproducibility of the biosensor was good, with an observed relative standard deviation of 5.9% (n = 8). The biosensor was found to be stable for at least 1 month when stored dry at 4 °C.  相似文献   

4.
A novel amperometric glucose sensor was constructed by immobilizing glucose oxidase (GOD) in a titania sol-gel film, which was prepared with a vapor deposition method. The sol-gel film was uniform, porous and showed a very low mass transport barrier and a regular dense distribution of GOD. Titania sol-gel matrix retained the native structure and activity of entrapped enzyme and prevented the cracking of conventional sol-gel glasses and the leaking of enzyme out of the film. With ferrocenium as a mediator the glucose sensor exhibited a fast response, a wide linear range from 0.07 to 15 mM. It showed a good accuracy and high sensitivity as 7.2 microA cm(-2) mM(-1). The general interferences coexisted in blood except ascorbic acid did not affect glucose determination, and coating Nafion film on the sol-gel film could eliminate the interference from ascorbic acid. The serum glucose determination results obtained with a flow injection analysis (FIA) system showed an acceptable accuracy, a good reproducibility and stability and indicated the sensor could be used in FIA determination of glucose. The vapor deposition method could fabricate glucose sensor in batches with a very small amount of enzyme.  相似文献   

5.
The simultaneous encapsulation of a coupled uricase-peroxidase system and amplex red in a sol-gel matrix allows one to obtain a reagent-less and ready-to-use fluorescent biosensor for the accurate detection of uric acid in highly diluted biological fluids. The detection limit of the prepared biosensor was found to be 20 nM and was linear up to 1 microM. The high sensitivity found for the biosensor permitted a reliable determination of uric acid concentrations in the presence of interfering species (e.g., ascorbic acid) just by sample dilution (up to 50000 for urine and 10000 for serum and blood). The sol-gel encapsulation preserved the hierarchy of the enzyme activity as demonstrated by the performance of the fluorescent biosensor.  相似文献   

6.
In this work we report the development of a highly sensitive fluorescent multienzymatic biosensor for quantitative xanthine detection. This biosensor is built by the simultaneous encapsulation of three enzymes, xanthine oxidase, superoxide dismutase and peroxidase, in a single sol-gel matrix coupled to the Amplex Red probe. The sol-gel chemistry yields a porous, optically transparent matrix that retains the natural conformation and the reactivity of the three co-immobilized proteins. Xanthine determination is based on a sequence of reactions, namely catalytic oxidation of xanthine to uric acid and superoxide radical, and subsequent catalytic dismutation of the radical, resulting in the formation of hydrogen peroxide, which reacts stoichiometrically with non-fluorescent Amplex Red to produce highly fluorescent resorufin. The optimal operational conditions for the biosensor were investigated. Linearity was observed for xanthine concentrations up to 3.5 microM, with a detection limit of 20 nM, which largely improved the sensitivity of the current xanthine biosensors. The developed biosensor is reusable and remains stable for 2 weeks under adequate storage conditions.  相似文献   

7.
An electrochemical biosensor based on a glassy carbon (GC) electrode chemically modified with the perfluorinated cation-exchange polymer Nafion and methyl viologen (MV) is described. The enzyme was immobilized by cross-linking with glutaraldehyde in the presence of bovine serum albumin (BSA), methyl viologen and Nafion. Operating variables such as the enzyme/BSA ratio, cross-linking time in glutaraldehyde vapor, methyl viologen and Nafion percentages were investigated with regard to their influence on the biosensor sensitivity by using glucose oxidase as the enzyme model due to its high stability and low cost. The glutamate biosensor was elaborated by using optimized parameters and its electrochemical properties were investigated by cyclic voltammetry, amperometry and by electrochemical impedance spectroscopy. The glutamate biosensor shows a detection limit of 20 microM and a linear range extended to 0.75 mM. Its selectivity was tested with 15 different amino acids, each with a concentration of 20 microM, 25 microM acetaminophen, 20 microM uric acid and 200 microM ascorbic acid. No amperometric response was observed for the interfering species. This good selectivity allows glutamate detection in biological media without previous separation of the analyte.  相似文献   

8.
Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C.  相似文献   

9.
An array-based optical biosensor for the simultaneous analysis of multiple samples in the presence of unrelated multi-analytes was fabricated. Urease and acetylcholinesterase (AChE) were used as model enzymes and were co-entrapped with the sensing probe, FITC-dextran, in the sol-gel matrix to measure pH, urea, acetylcholine (ACh) and heavy metals (enzyme inhibitors). Environmental and biological samples spiked with metal ions were also used to evaluate the application of the array biosensor to real samples. The biosensor exhibited high specificity in identifying multiple analytes. No obvious cross-interference was observed when a 50-spot array biosensor was used for simultaneous analysis of multiple samples in the presence of multiple analytes. The sensing system can determine pH over a dynamic range from 4 to 8.5. The limits of detection (LODs) of 2.5-50 microM with a dynamic range of 2-3 orders of magnitude for urea and ACh measurements were obtained. Moreover, the urease-encapsulated array biosensor was used to detect heavy metals. The analytical ranges of Cd(II), Cu(II), and Hg(II) were between 10 nM and 100 mM. When real samples were spiked with heavy metals, the array biosensor also exhibited potential effectiveness in screening enzyme inhibitors.  相似文献   

10.
A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 × 10−4 mM. A biosensor based on the glucose oxidase–titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (−0.4 V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6 s and a detection limit of 2.0 × 10−3 mM. The corresponding detection sensitivity was 45.5 μA mM−1 cm−2. A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.  相似文献   

11.
A novel acetylcholinesterase (AChE)/choline oxidase (ChOx) bienzyme amperometric acetylcholine biosensor based on gold nanoparticles (AuNPs) and multi-walled carbon nanotubes (MWCNTs) has been successfully developed by self-assembly process in combination of sol-gel technique. A thiolated aqueous silica sol containing MWCNTs and ChOx was first dropped on the surface of a cleaned Pt electrode, and then AuNPs were assembled with the thiolated sol-gel network. Finally, the alternate deposition of poly (diallyldimethylammonium chloride) (PDDA) and AChE was repeated to assemble different layers of PDDA-AChE on the electrode for optimizing AChE loading. Among the resulting biosensors, the biosensor based on two layers of PDDA-AChE multilayer films showed the best performance. It exhibited a wide linear range, high sensitivity and fast amperometric response, which were 0.005-0.4mM, 3.395 μA/mM, and within 15s, respectively. The biosensor showed long-term stability and acceptable reproducibility. More importantly, this study could provide a simple and effective multienzyme immobilization platform for meeting the demand of the effective immobilization enzyme on the electrode surface.  相似文献   

12.
An optical array biosensor encapsulated with hydrolase and oxidoreductase using sol-gel immobilization technique has been fabricated for simultaneous analysis and screening of multiple samples to determine the presence of multianalytes which are clinically important in relation to renal failure. Urease and creatinine deiminase were used to detect urea and creatinine, while glucose oxidase and uricase were coimmobilized with horseradish peroxidase to quantify glucose and uric acid. Moreover, the concentrations of analytes in fetal calf serum were measured and quantified using the developed sensing system. The array biosensor showed good specificity for the simultaneous analysis of multiple samples for multianalytes without obvious cross-interference. The analytical ranges of the four analytes were between 0.01 and 10mM with detection limits of 2.5-80 microM. High precision with relative standard deviations of 3.8-9.2% (n=45) was also demonstrated. The reproducibility of array-to-array in 3 consecutive months was 5.4% (n=3). Moreover, the concentrations of analytes in fetal calf serum were 5.9 mM for urea, 0.13 mM for creatinine, 3.3mM for glucose, and 0.15 mM for uric acid, which were in good agreement with results obtained using the traditional spectroscopic methods. These results demonstrate the first use of a sol-gel-derived optical array biosensor for simultaneous analysis of multiple samples for the presence of multiple clinically important renal analytes.  相似文献   

13.
A novel amperometric biosensor, based on electrodeposition of platinum nanoparticles onto multi-walled carbon nanotube (MWNTs) and immobilizing enzyme with chitosan-SiO(2) sol-gel, is presented in this article. MWNTs were cast on the glass carbon (GC) substrate directly. An extra Nafion coating was used to eliminate common interferents such as acetaminophen and ascorbic acids. The morphologies and electrochemical performance of the modified electrodes have been investigated by scanning electron microscopy (SEM) and amperometric methods, respectively. The synergistic action of Pt and MWNTs and the biocompatibility of chitosan-SiO(2) sol-gel made the biosensor have excellent electrocatalytic activity and high stability. The resulting biosensor exhibits good response performance to glucose with a wide linear range from 1 microM to 23 mM and a low detection limit 1 microM. The biosensor also shows a short response time (within 5s), and a high sensitivity (58.9 microAm M(-1)cm(-2)). In addition, effects of pH value, applied potential, rotating rate, electrode construction and electroactive interferents on the amperometric response of the sensor were investigated and discussed in detail.  相似文献   

14.
In this work, a highly sensitive fluorescent biosensor for quantitative superoxide radical detection, based on the coupled reaction superoxide dismutase-peroxidase enzymes and the use of the probe Amplex red, is described. Superoxide anion radical was produced via oxidation of xanthine by xanthine oxidase. Dismutation of superoxide was catalyzed by superoxide dismutase, generating hydrogen peroxide, which reacted stoichiometrically with the nonfluorescent Amplex red, in the presence of peroxidase, yielding the red-fluorescent oxidation product resorufin. The coupled superoxide dismutase-peroxidase system was immobilized in a single sol-gel matrix. The enzymatic activity of the encapsulated superoxide dismutase-peroxidase system was nearly identical to that of one of the soluble enzymes, indicating that sol-gel encapsulation preserved the hierarchy of the enzyme's activity. Specificity and reusability of the encapsulated system for up to four cycles were also demonstrated. The fluorescent biosensor was able to detect concentrations of superoxide as low as 20 nM in phospholipid model membranes composed of saturated or unsaturated phospholipids. These facts make this biosensor a simple, reliable, and highly sensitive method with a potential use in biological systems, food, and drinks.  相似文献   

15.
A fluorescent glucose biosensor was constructed by immobilizing glucose oxidase on a bamboo inner shell membrane with glutaraldehyde as a cross-linker. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution with a concomitant increase in the fluorescence intensity of an oxygen transducer, tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(Pi) ditetrakis(4-chlorophenyl)borate. The enzyme immobilization, effect of pH, temperature and ionic strength have been studied in detail. The biosensor exhibited repeatable response to a 2.0 mM glucose solution with a relative standard deviation of 3.0% (n = 10). It showed good storage stability and maintained 95% of its initial response after it had been kept at 4 degrees C for 8 months. The biosensor has a linear response range of 0.0-0.6 mM glucose with a detection limit of 58 microM (S/N = 3). Common potential interferants in samples do not pose any significant interference on the response of the glucose biosensor. It was successfully applied to the determination of glucose content in some commercial wines and medical glucose injections.  相似文献   

16.
A novel quartz crystal microbalance (QCM) sensor with a high selectivity and sensitivity has been developed for bilirubin determination, based on the modification of bilirubin-imprinted titania film onto a quartz crystal by molecular imprinting and surface sol-gel techniques. The performance of the developed bilirubin biosensor was evaluated and the results indicated that a sensitive bilirubin biosensor could be fabricated. The obtained bilirubin biosensor presents high-selectivity monitoring of bilirubin, better reproducibility, shorter response time (30 min), wider linear range (0.1-50 μM), and lower detection limit (0.05 μM). The analytical application of the bilirubin biosensor confirms the feasibility of bilirubin determination in serum sample.  相似文献   

17.
One-step construction of Pt nanoparticles-chitosan composite film (PtNPs-CS) was firstly proposed as a novel immobilization matrix for the enzymes to fabricate glucose biosensor. This novel interface embedded in situ PtNPs in CS hydrogel was developed by one-step electrochemical deposition in solution containing CS and chloroplatinic acid (H(2)PtCl(6)). Several techniques, including scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry were employed to characterize the assembly process and performance of the biosensor. Under the optimized experimental conditions, the resulting biosensor exhibited excellent linear behavior in the concentration range from 1.2 μM to 4.0 mM for the quantitative analysis of glucose with a limit of detection of 0.4 μM at a signal-to-noise ratio of 3. The apparent Michaelis-Menten constant (K(M)(app)) was evaluated to be 2.4 mM, showing good affinity. The proposed biosensor offered good amperometric responses to glucose due to the nanostructured sensing film provided plenty of active sites for the immobilization of glucose oxidase (GOD).  相似文献   

18.
A feasible and sensitive biosensor for catechol and its derivatives using 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC)-modified glassy carbon electrode was successfully constructed by polyvinyl alcohol-modified SiO? sol-gel method. The as-prepared biosensor was characterized by electrochemical impedance spectroscopy, and the surface topography of the film was imaged by atomic force microscope. Liquid chromatography-tandem mass spectrometry was applied to reveal the catalytic mechanism. BphC embedded in SiO? gel maintained its bioactivity well and exhibited excellent eletrocatalytical response to both catechol and some of its derivatives (such as 3-methylcatechol and 4-methylcatechol). The biosensor showed a linear amperometric response range between 0.002 mM and 0.8 mM catechol. And the sensitivity was 1.268 mA/(mM cm2) with a detection limit of 0.428 μM for catechol (S/N = 3). Furthermore, the BphC biosensor exhibited perfect selectivity for catechol in the mixtures of catechol and phenol. It was suggested that this flexible protocol would open up a new avenue for designing other ring-cleavage enzyme biosensors, which could be widely used for monitoring various kinds of environmental pollutants.  相似文献   

19.
A novel amperometric immunosensor for determination of human serum chorionic gonadotrophin (HCG) was constructed by immobilization of HCG with titania sol-gel on a glassy carbon electrode and the direct electrochemistry of horseradish peroxidase (HRP) labeled to HCG antibody (HRP-anti-HCG). The morphologies of the HCG membrane were characterized to be chemically clean, porous and homogeneous. HRP-anti-HCG was functionally conjugated with the immobilized HCG after incubation in phosphate buffer (PBS) containing HRP-anti-HCG. A direct electron transfer of HRP with a rate constant of 1.35+/-0.40 s(-1) was observed at the HRP-anti-HCG-HCG/titania sol-gel membrane modified electrode in 0.1 M PBS pH 7.0. With a competitive mechanism the differential pulse voltammetric peak current of the immobilized HRP decreased linearly with an increasing HCG concentration from 2.5 to 12.5 mIU/ml in the incubation solution. The HCG immunosensor showed a detection limit of 1.4 mIU/ml, a good accuracy and acceptable precision and reproducibility with an intra-assay CV of 4.7% at 5.0 mIU/ml and an inter-assay precision of 8.1% obtained at 10 mIU/ml. The biosensor displayed a good stability in a storage period of 30 days.  相似文献   

20.
Platinum nanoparticle-doped sol-gel solution is prepared and used as a binder for multi-walled carbon nanotubes (CNT) for the fabrication of electrochemical sensors. Amine group containing sol-gel solution is selected to utilize the affinity of -NH(2) groups toward metal nanoparticles for stabilization the nanoparticles in solution. The resulting CNT-silicate material brings new capabilities for electrochemical devices by using the synergistic action of the electrocatalytic activity of Pt nanoparticles and CNT. The combined electrocatalytic activity permits low-potential detection of hydrogen peroxide with remarkably improved sensitivity. With the incorporation of glucose oxidase within the Pt-CNT-silicate matrix, a Pt-CNT paste-based biosensor has been constructed that responds more sensitively to glucose than CNT-based biosensor. The influences of the composite of the sol-gel solution, the quantity of the solution and the Pt nanoparticles loading are examined. In pH 6.98 phosphate buffer, almost interference free determination of glucose is realized at 0.1 V versus SCE with a linear range from 1 to 25 mM, a response time <15s, and the sensitivity is 0.98 microA mM(-1)cm(-2). The sensitivity of the Pt-CNT paste-based biosensor is almost four times larger than that of the CNT-based biosensor (0.27 microA mM(-1)cm(-2) at 0.1 V). The improved electrocatalytic activity and surface renewability made the Pt-CNT-silicate system a potential platform to immobilize different enzymes for other bioelectrochemical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号