首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The Puf family of RNA-binding proteins directs cell fates by regulating gene expression at the level of translation and RNA stability. Here, we report that the Caenorhabditis elegans pumilio homolog, puf-9, controls the differentiation of epidermal stem cells at the larval-to-adult transition. Genetic analysis reveals that loss-of-function mutations in puf-9 enhance the lethality and heterochronic phenotypes caused by mutations in the let-7 microRNA (miRNA), while suppressing the heterochronic phenotypes of lin-41, a let-7 target and homolog of Drosophila Brat. puf-9 interacts with another known temporal regulator hbl-1, the Caenorhabditis elegans ortholog of hunchback. We present evidence demonstrating that puf-9 is required for the 3'UTR-mediated regulation of hbl-1, in both the hypodermis and the ventral nerve cord. Finally, we show that this regulation is dependent on a region of the hbl-1 3'UTR that contains putative Puf family binding sites as well as binding sites for the let-7 miRNA family, suggesting that puf-9 and let-7 may mediate hypodermal seam cell differentiation by regulating common targets.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The stable globin mRNAs provide an ideal system for studying the mechanism governing mammalian mRNA turnover. alpha-Globin mRNA stability is dictated by sequences in the 3' untranslated region (3'UTR) which form a specific ribonucleoprotein complex (alpha-complex) whose presence correlates with mRNA stability. One of the major protein components within this complex is a family of two polycytidylate-binding proteins, alphaCP1 and alphaCP2. Using an in vitro-transcribed and polyadenylated alpha-globin 3'UTR, we have devised an in vitro mRNA decay assay which reproduces the alpha-complex-dependent mRNA stability observed in cells. Incubation of the RNA with erythroleukemia K562 cytosolic extract results in deadenylation with distinct intermediates containing a periodicity of approximately 30 nucleotides, which is consistent with the binding of poly(A)-binding protein (PABP) monomers. Disruption of the alpha-complex by sequestration of alphaCP1 and alphaCP2 enhances deadenylation and decay of the mRNA, while reconstitution of the alpha-complex stabilizes the mRNA. Similarly, PABP is also essential for the stability of mRNA in vitro, since rapid deadenylation resulted upon its depletion. An RNA-dependent interaction between alphaCP1 and alphaCP2 with PABP suggests that the alpha-complex can directly interact with PABP. Therefore, the alpha-complex is an mRNA stability complex in vitro which could function at least in part by interacting with PABP.  相似文献   

13.
14.
The alternative polyadenylation of the mRNA encoding the amyloid precursor protein (APP) involved in Alzheimer's disease generates two molecules, with the first of these containing 258 additional nucleotides in the 3' untranslated region (3'UTR). We have previously shown that these 258 nucleotides increase the translation of APP mRNA injected in Xenopus oocytes (5). Here, we demonstrate that this mechanism occurs in CHO cells as well. We also present evidence that the 3'UTR containing 8 nucleotides more than the short 3'UTR allows the recovery of an efficiency of translation similar to that of the long 3'UTR. Moreover, the two guanine residues located at the 3' ends of these 8 nucleotides play a key role in the translational control. Using gel retardation mobility shift assay, we show that proteins from Xenopus oocytes, CHO cells, and human brain specifically bind to the short 3'UTR but not to the long one. The two guanine residues involved in the translational control inhibit this specific binding by 65%. These results indicate that there is a correlation between the binding of proteins to the 3'UTR of APP mRNA and the efficiency of mRNA translation, and that a GG motif controls both binding of proteins and translation.  相似文献   

15.
Schaaf MJ  Cidlowski JA 《Steroids》2002,67(7):627-636
An association between a gene polymorphism of the human glucocorticoid receptor (hGR) gene and rheumatoid arthritis has recently been suggested. This polymorphism contains an A to G mutation in the 3'UTR of exon 9beta, which encodes the 3'UTR of the mRNA of the hGRbeta isoform. The hGRbeta isoform can act as a dominant negative inhibitor of hGRalpha, and therefore may contribute to glucocorticoid resistance. The A to G mutation is located in an AUUUA motif, which is known to destabilize mRNA. In the present study, the importance of the mutation in this AUUUA motif was further characterized and mutations in other AUUUA motifs in the 3'UTR of hGRbeta and hGRalpha mRNA were studied. hGRbeta and hGRalpha expression vectors, carrying mutations in one AUUUA motif or all AUUUA motifs were transiently transfected into COS-1 cells. Each transfected vector was analyzed for the mRNA expression level, the mRNA turnover rate and the protein expression level. The naturally occurring mutation in the 3'UTR of hGRbeta mRNA increased mRNA stability and protein expression. Mutation of two other AUUUA motifs in the 3'UTR of hGRbeta, or mutation of all four AUUUA motifs resulted in a similar effect. Mutation of the most 5' AUUUA motif did not alter hGRbeta mRNA expression or mRNA stability. Mutation of all 10 AUUUA motifs in the 3'UTR of hGRalpha mRNA increased hGRalpha mRNA expression and mRNA stability as well as expression of the receptor protein level. Thus, the naturally occurring mutation in an AUUUA motif in the 3'UTR of hGRbeta mRNA results not only in increased mRNA stability, but also in increased receptor protein expression, which may contribute to glucocorticoid resistance. A similar role is suggested for two other AUUUA motifs in the 3'UTR of hGRbeta mRNA and for the 10 AUUUA motifs that are present in the 3'UTR of hGRalpha.  相似文献   

16.
17.
18.
19.
Previous experiments suggested that the upstream AUG triplet present in the 5' untranslated region (UTR) of muscle acylphosphatase mRNA is involved in the regulation of protein expression. In this paper, we study the involvement of the 5'UTR secondary structure and upstream peptide on mRNA stability and protein translation. Our data, obtained using deletion and frame-shift mutants, demonstrate that the 5'UTR controls protein expression regulating translation together with mRNA stability. Furthermore, we demonstrate that the inhibitory effect of the 5'UTR of muscle acylphosphatase is relieved during the differentiation process in agreement with previous data reporting an increase of acylphosphatase content during cell differentiation. Finally, UV cross-linking experiments show that specific mRNA-binding proteins are associated with the 5'UTR of the muscle acylphosphatase mRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号