首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analogues of glutamyl-gamma-boronate (1) were synthesized as mechanism-based inhibitors of bacterial Glu-tRNA(Gln) amidotransferase (Glu-AdT) and were designed to engage a putative catalytic serine nucleophile required for the glutaminase activity of the enzyme. Although 1 provides potent enzyme inhibition, structure-activity studies revealed a narrow range of tolerated chemical changes that maintained activity. Nonetheless, growth inhibition of organisms that require Glu-AdT by the most potent enzyme inhibitors appears to validate mechanism-based inhibitor design of Glu-AdT as an approach to antimicrobial development.  相似文献   

2.
The formation of delta-aminolevulinic acid, the first committed precursor of chlorophyll biosynthesis, occurs in the chloroplast of plants and algae by the C5-pathway, a three-step, tRNA-dependent transformation of glutamate. Previously, we reported the purification and characterization of the first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase from the green alga Chlamydomonas reinhardtii (Chen, M.-W., Jahn, D., Sch?n, A., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4054-4057 and Chen, M.-W., Jahn, D., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4058-4063). Here we present the purification of the third enzyme of the pathway, the glutamate-1-semialdehyde aminotransferase from C. reinhardtii. The enzyme was purified from the membrane fraction of a whole cell extract employing four different chromatographic separations. The apparent molecular mass of the protein was approximately 43,000 Da as analyzed by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by nondenaturing rate zonal sedimentation on glycerol gradients, and by gel filtration. By these criteria, the enzyme in its active form is a monomer of 43,000 Da. In the presence of pyridoxal 5'-phosphate, purified glutamate-1-semialdehyde aminotransferase converts synthetic glutamate 1-semialdehyde to delta-aminolevulinic acid. The enzyme is inhibited by gabaculine and aminooxyacetate, both typical inhibitors of aminotransferases. The purified glutamate-1-semialdehyde aminotransferase successfully reconstitutes the whole C5-pathway in vitro from glutamate in the presence of purified glutamyl-tRNA synthetase, glutamyl-tRNA reductase, Mg2+, ATP, NADPH, tRNA, and pyridoxal 5'-phosphate.  相似文献   

3.
4.
Chloroplastic NADP-isocitrate dehydrogenase isoenzyme (NADP-IDH2; EC 1.1.1.42) from the eukaryotic microalga Chlamydomonas reinhardtii was purified to electrophoretic homogeneity by a procedure which included affinity chromatography on Red-Sepharose as the key step. The 70-kDa isoenzyme was found to be a dimer formed by 40-kDa subunits. Antibodies raised against a recombinant tobacco cytosolic NADP-IDH cross-reacted strongly with the cytosolic NADP-IDH1 and weakly with the NADP-IDH2 isoenzyme from this alga. NADPH and GTP were found to inhibit both isoenzymes, whereas intermediates of the tricarboxylic acid cycle, glycolysis or reductive pentose phosphate cycle had no significant effect. The simultaneous presence of isocitrate and Mn2+ protected NADP-IDH2 against thermal inactivation or inhibition by reagents specific for arginine or lysine.  相似文献   

5.
Z F Wang  J Yang  Z Q Nie  M Wu 《Biochemistry》1991,30(4):1127-1131
A crude in vitro system which initiates chloroplast DNA synthesis near the D-loop site mapped by electron microscopy [Wu, M., Lou, J. K., Chang, D. Y., Chang, C. H., & Nie, Z. Q. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6761-6765] consists of soluble proteins and proteins extracted from purified thylakoid membrane. In this paper, a DNA polymerase activity was purified to near homogeneity from the soluble protein fraction of this in vitro system by sequential chromatographic separations on heparin-agarose, DEAE-cellulose, and single-stranded DNA-agarose columns and sedimentation in a glycerol gradient. In the glycerol gradient, the enzyme activity sedimented at a position corresponding to a 110-kDa protein. Electrophoretic analysis of the highly purified fraction on SDS-polyacrylamide gel revealed a major polypeptide band with an apparent molecular mass of approximately 116 kDa. In situ DNA polymerase activity assay shows that the DNA polymerization function is associated with the 116-kDa band and an 80-kDa band which could be a subunit of the enzyme. Polymerization activity is inhibited by N-ethylmaleimide, ethidium bromide, and dideoxycytosine triphosphate and is relatively resistant to aphidicolin. Poly(dA).(dT)10 and gapped double-stranded DNA are preferred templates. The purified enzyme contains no exonuclease activity and can initiate DNA replication in a supercoiled plasmid DNA template containing the chloroplast DNA replication origin.  相似文献   

6.
Purification of Hydrogenase from Chlamydomonas reinhardtii   总被引:2,自引:1,他引:1       下载免费PDF全文
A method is described which results in a 2750-fold purification of hydrogenase from Chlamydomonas reinhardtii, yielding a preparation which is approximately 40% pure. With a saturating amount of ferredoxin as the electron mediator, the specific activity of pure enzyme was calculated to be 1800 micromoles H2 produced per milligram protein per minute. The molecular weight was determined to be 4.5 × 104 by gel filtration and 4.75 × 104 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has an abundance of acidic side groups, contains iron, and has an activation energy of 55.1 kilojoules per mole for H2 production; these properties are similar to those of bacterial hydrogenases. The enzyme is less thermally stable than most bacterial hydrogenases, however, losing 50% of its activity in 1 hour at 55°C. The Km of purified hydrogenase for ferredoxin is 10 micromolar, and the binding of these proteins to each other is enhanced under slightly acidic conditions. Purified hydrogenase also accepts electrons from a variety of artificial electron mediators, including sodium metatungstate, sodium silicotungstate, and several viologen dyes. A lag period is frequently observed before maximal activity is expressed with these artificial electron mediators, although the addition of sodium thiosulfate at least partially overcomes this lag.  相似文献   

7.
The gatC, gatA and gatB genes encoding the three subunits of glutamyl-tRNAGln amidotransferase from Acidithiobacillus ferrooxidans, an acidophilic bacterium used in bioleaching of minerals, have been cloned and expressed in Escherichia coli. As in Bacillus subtilis the three gat genes are organized in an operon-like structure in A. ferrooxidans. The heterologously overexpressed enzyme converts Glu-tRNAGln to Gln-tRNAGln and Asp-tRNAAsn to Asn-tRNAAsn. Biochemical analysis revealed that neither glutaminyl-tRNA synthetase nor asparaginyl-tRNA synthetase is present in A. ferrooxidans, but that glutamyl-tRNA synthetase and aspartyl-tRNA synthetase enzymes are present in the organism. These data suggest that the transamidation pathway is responsible for the formation of Gln-tRNA and Asn-tRNA in A. ferrooxidans.  相似文献   

8.
Chlamydomonas reinhardtii cells are surrounded by a mixture of hydroxyprolin-rich glycoproteins consisting of L-arabinose, D-galactose, D-glucose, and D-mannose residues. The L-arabinose residue is thought to be attached by a transfer of UDP-L-arabinofuranose (UDP-Araf), which is produced from UDP-L-arabinopyranose (UDP-Arap) by UDP-arabinopyranose mutase (UAM). UAM was purified from the cytosol to determine the involvement of C. reinhardtii UAM (CrUAM) in glycoprotein synthesis. CrUAM was purified 94-fold to electrophoretic homogeneity by hydrophobic and size-exclusion chromatography. CrUAM catalyzed the reversible conversion between UDP-Arap and UDP-Araf and exhibited autoglycosylation activity when UDP-D-[14C]glucose was added as substrate. Compared to the properties of native and recombinant CrUAM overexpressed in Escherichia coli, native CrUAM showed a higher affinity for UDP-Arap than recombinant CrUAM did. This increased affinity for UDP-Arap might have been caused by post-translational modifications that occur in eukaryotes but not in prokaryotes.  相似文献   

9.
Belknap WR 《Plant physiology》1983,72(4):1130-1132
Partially purified intact chloroplasts were prepared from batch cultures of both wild type (Wt) and a mutant strain of Chlamydomonas reinhardtii. Protoplasts were generated from log phase cultures of Wt (137c) and the phosphoribulokinase-deficient mutant F60 by incubation of the cells in autolysine. These protoplasts were suspended in an osmoticum, cooled, and then subjected to a 40 pounds per square inch pressure shock using a Yeda pressure bomb. The resulting preparation was fractionated on a Percoll step gradient which separated the intact chloroplasts from both broken chloroplasts and protoplasts.

The chloroplast preparation was not significantly contaminated with the cytoplasmic enzyme activity phosphoenolpyruvate carboxylase (>5%), and contained (100%) stromal enzyme activity ribulose-1,5-bisphosphate carboxylase. The chloroplast preparation is significantly contaminated by mitochondria, as determined by succinate dehydrogenase activity. Chloroplasts prepared from Wt cells retained CO2-dependent O2 photoevolution at rates in excess of 60 micromoles per milligram chlorophyll per hour, an activity which is severely inhibited by the addition of 10 millimolar KH2PO4. The chloroplasts are osmotically sensitive as determined by ferricyanide-dependent O2 photoevolution.

  相似文献   

10.
In Bacillus subtilis, the formation of glutaminyl-tRNA is accomplished by first charging tRNA(Gln) with glutamate, which is then amidated. Glutamine was preferred over asparagine and ammonia as the amide donor in vitro. There is a functional analogy of this reaction to that catalyzed by glutamine synthetase. Homogeneous glutamine synthetase, from either B. subtilis or Escherichia coli, catalyzed the amidotransferase reaction but only about 3 to 5% as well as a partially purified preparation from B. subtilis. Several classes of glutamine synthetase mutants of B. subtilis, however, were unaltered in the amidotransferase reaction. In addition, there was no inhibition by inhibitors of either glutamine synthetase or other amidotransferases. A unique, rather labile activity seems to be required for this reaction.  相似文献   

11.
The Helicobacter pylori (Hp) Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (AdT) plays important roles in indirect aminoacylation and translational fidelity. AdT has two active sites, in two separate subunits. Kinetic studies have suggested that interdomain communication occurs between these subunits; however, this mechanism is not well understood. To explore domain-domain communication in AdT, we adapted an assay and optimized it to kinetically characterize the kinase activity of Hp AdT. This assay was applied to the analysis of a series of point mutations at conserved positions throughout the putative AdT ammonia tunnel that connects the two active sites. Several mutations that caused significant decreases in AdT's kinase activity (reduced by 55-75%) were identified. Mutations at Thr149 (37 ? distal to the GatB kinase active site) and Lys89 (located at the interface of GatA and GatB) were detrimental to AdT's kinase activity, suggesting that these mutations have disrupted interdomain communication between the two active sites. Models of wild-type AdT, a valine mutation at Thr149, and an arginine mutation at Lys89 were subjected to molecular dynamics simulations. A comparison of wild-type, T149V, and K89R AdT simulation results unmasks 59 common residues that are likely involved in connecting the two active sites.  相似文献   

12.
An enzyme which catalyzes the transamination of L-alanine with 2-oxoglutarate has been purified 157-fold to electrophoretic homogeneity from the unicellular green alga Chlamydomonas reinhardtii 6145c. The enzyme showed maximal activity at pH 7.3 and 50 degrees C, has an apparent molecular mass of 105 kDa as estimated by gel filtration, and consists of two identical subunits of 45 kDa each as deduced from PAGE/SDS studies. A stoichiometry of two moles pyridoxal 5-phosphate/mole enzyme was calculated. The enzyme has an isoelectric point of 8.3 and its absorption spectrum exhibits a maximum at 412 nm which is shifted to 330 nm upon addition of L-alanine. Pyridoxal 5-phosphate protected activity against heat inactivation and, to a minor extent, L-alanine and 2-oxoglutarate, but not L-glutamate. Spectral data and activity inhibition and protection studies strongly support the involvement of pyridoxal 5-phosphate in enzyme catalysis through a Schiff's base formation. The purified enzyme was able to transaminate only L-alanine and L-glutamate with glyoxylate out of ten amino acids tested. L-Alanine aminotransferase exhibited hyperbolic kinetic for 2-oxoglutarate, pyruvate, and L-glutamate, and nonhyperbolic behaviour for L-alanine. Apparent Km values were 0.054 mM for 2-oxoglutarate, 0.52 for L-glutamate, 0.24 mM for pyruvate, and 2.7 mM for L-alanine. Transamination of L-alanine in C. reinhardtii is a bisubstrate reaction with a bi-bi ping-pong mechanism, and is not inhibited by substrates.  相似文献   

13.
In Chlamydomonas reinhardtii y-1, newly synthesized chlorophyll a/b-binding apoproteins are degraded when chlorophylls are not present for assembly of stable light-harvesting complexes. A protease was purified from the membrane fraction of degreened y-1 cells, which digested chlorophyll a/b-binding proteins in membranes from C. reinhardtii pg-113, a protease-deficient strain. This protease was active with p-nitroanilides of nonpolar amino acids (Leu and Phe), but not of basic amino acids (Lys and Arg). The apparent molecular weight of the enzyme is 38,000 ± 2,000 as determined by electrophoresis in the presence of sodium dodecyl sulfate. Typical inhibitors of the major classes of proteases were ineffective with this enzyme. Protease activity was constant from pH 7.5 to 9; a plot of log V versus pH suggested that deprotonation of an ionizable group with a pK value of 6.0 to 6.5 is required for activity. The protease was inactivated by diethylpyrocarbonate and by photooxidation sensitized by rose bengal. These results suggested that a histidyl residue is required for catalysis. Although very sensitive to photodynamic conditions in vitro, the enzyme was not inactivated in vivo when cells were exposed to light.  相似文献   

14.
Xanthine dehydrogenase (XDH, EC 1.2.1.37) of Chlamydomonas reinhardtii (Sager) 6145c wild strain has been isolated and characterized for the first time in a unicellular green alga. The enzyme has an Mr of 330 kDa, and FAD, molybdenum and iron are cofactors required for its activity as deduced from results obtained using specific inhibitors, 59Fe-labelling experiments, activity protection by FAD, physiological responses in vivo to iron and molybdenum deficiencies in the culture medium and work with mutants lacking molybdenum cofactor. Xanthine dehydrogenase exhibited Mi-chaelian kinetics typical for a bisubstrate enzyme with apparent Km values for NAD +, hypoxanthine and xanthine of 35, 160 and 70 μ M , respectively. Under phototrophic conditions enzyme activity was repressed by ammonium, but xanthine was not required for the enzyme to be induced, since high levels of enzyme activity were found in cells grown on ammonium and transferred to either N-frec media or media containing either of the nitrogen sources adenine, urea, urate, xanthine, hypoxanthine and guanine.  相似文献   

15.
Xanthine dehydrogenase (XDH) from the unicellular green alga Chlamydomonas reinhardtii has been purified to electrophoretic homogeneity by a procedure which includes several conventional steps (gel filtration, anion exchange chromatography and preparative gel electrophoresis). The purified protein exhibited a specific activity of 5.7 units/mg protein (turnover number = 1.9 .10(3) min-1) and a remarkable instability at room temperature. Spectral properties were identical to those reported for other xanthine-oxidizing enzymes with absorption maxima in the 420-450 nm region and a shoulder at 556 nm characteristic of molybdoflavoproteins containing iron-sulfur centers. Chlamydomonas XDH was irreversibly inactivated upon incubation of enzyme with its physiological electron donors xanthine and hypoxanthine, in the absence of NAD+, its physiological electron acceptor. As deduced from spectral changes in the 400-500 nm region, xanthine addition provoked enzyme reduction which was followed by inactivation. This irreversible inactivation also took place either under anaerobic conditions or whenever oxygen or any of its derivatives were excluded. Adenine, 8-azaxanthine and acetaldehyde which could act as reducing substrates of XDH were also able to inactivate it upon incubation. The same inactivating effect was observed with NADH and NADPH, electron donors for the diaphorase activity associated with xanthine dehydrogenase. In addition, partial activities of XDH were differently affected by xanthine incubation. We conclude that xanthine dehydrogenase inactivation by substrate is due to an irreversible process affecting mainly molybdenum center and that sequential and uninterrupted electron flow from xanthine to NAD+ is essential to maintain the enzyme in its active form.  相似文献   

16.
NAD-isocitrate dehydrogenase (NAD-IDH) from the eukaryotic microalga Chlamydomonas reinhardtii was purified to electrophoretic homogeneity by successive chromatography steps on Phenyl-Sepharose, Blue-Sepharose, diethylaminoethyl-Sephacel, and Sephacryl S-300 (all Pharmacia Biotech). The 320-kD enzyme was found to be an octamer composed of 45-kD subunits. The presence of isocitrate plus Mn2+ protected the enzyme against thermal inactivation or inhibition by specific reagents for arginine or lysine. NADH was a competitive inhibitor (Ki, 0.14 mm) and NADPH was a noncompetitive inhibitor (Ki, 0.42 mm) with respect to NAD+. Citrate and adenine nucleotides at concentrations less than 1 mm had no effect on the activity, but 10 mm citrate, ATP, or ADP had an inhibitory effect. In addition, NAD-IDH was inhibited by inorganic monovalent anions, but l-amino acids and intermediates of glycolysis and the tricarboxylic acid cycle had no significant effect. These data support the idea that NAD-IDH from photosynthetic organisms may be a key regulatory enzyme within the tricarboxylic acid cycle.IDH catalyzes the oxidative decarboxylation of isocitrate to produce 2-oxoglutarate. According to the specificity for the electron acceptor, two enzymes with IDH activity are known, NAD-IDH (EC 1.1.1.41) and NADP-IDH (EC 1.1.1.42) (Chen and Gadal, 1990a).In photosynthetic organisms NADP-IDH has been detected in the cytosol, chloroplasts, mitochondria, and peroxisomes. Cytosolic NADP-IDH has been purified from higher plants (Chen et al., 1988) and eukaryotic algae (Martínez-Rivas et al., 1996), and its cDNA has been cloned from alfalfa (Shorrosh and Dixon, 1992), soybean (Udvardi et al., 1993), potato (Fieuw et al., 1995), and tobacco (Gálvez et al., 1996). This 80-kD isoenzyme is a dimer, and it is likely to be involved in the synthesis of NADPH for biosynthetic purposes in the cytosol (Chen et al., 1988), in the synthesis of 2-oxoglutarate for ammonium assimilation (Chen and Gadal, 1990b), and in the cycling, redistribution, and export of amino acids (Fieuw et al., 1995). Chloroplastic NADP-IDH has been studied in higher plants (Gálvez et al., 1994) and eukaryotic algae (Martínez-Rivas and Vega, 1994). It is a 154-kD dimer that has been proposed to be involved in the supply of NADPH for biosynthetic reactions in the chloroplast when photosynthetic NADPH production is low (Gálvez et al., 1994). The mitochondrial NADP-IDH of higher plants may have a physiological role in the production of NADPH, which can be converted to NADH by a transhydrogenase or used to reduce glutathione in the mitochondrial matrix (Rasmusson and Møller, 1990). NADP-IDH activity has also been detected in peroxisomes from spinach leaves (Yamazaki and Tolbert, 1970).NAD-IDH is localized exclusively in the mitochondria in association with the TCA cycle. This enzyme has been purified from several nonphotosynthetic eukaryotes such as fungi (Keys and McAlister-Henn, 1990; Alvarez-Villafañe et al., 1996) and animals (Giorgio et al., 1970), in which it appears to be a 300-kD octamer. Its key regulatory role in the TCA cycle is well documented. The NAD-IDH from yeast is activated by AMP and citrate (Hathaway and Atkinson, 1963), whereas the animal enzyme is activated by ADP and citrate (Cohen and Colman, 1972). In addition, the NAD-IDH cDNAs have been cloned from yeast (Cupp and McAlister-Henn, 1991, 1992) and animals (Nichols et al., 1995; Zeng et al., 1995). In these organisms, the enzyme is composed of two (yeast) or more (animals) different subunits encoded by different genes.To our knowledge, no NAD-IDH from photosynthetic organisms has yet been purified to homogeneity, mainly because of the low stability of the enzyme (Oliver and McIntosh, 1995). However, partial purifications have been reported from pea (Cox and Davies, 1967; Cox, 1969; McIntosh and Oliver, 1992), potato (Laties, 1983), spruce (Cornu et al., 1996), and the eukaryotic microalga Chlamydomonas reinhardtii (Martínez-Rivas and Vega, 1994). Matrix and membrane forms of the enzyme have been detected in potato (Tezuka and Laties, 1983) and pea (McIntosh, 1997). Although it is an allosteric enzyme that exhibits sigmoidal kinetics with respect to isocitrate (Cox and Davies, 1967; McIntosh and Oliver, 1992) and is activated in vitro by ABA (Tezuka et al., 1990), the regulatory importance of NAD-IDH in photosynthetic organisms is still under debate.To elucidate the regulatory significance of NAD-IDH in photosynthetic organisms and its apparent contribution to the 2-oxoglutarate supply for ammonium assimilation, we have purified and characterized the NAD-IDH from C. reinhardtii.  相似文献   

17.
A method is described for the isolation and purification of active oxygen-evolving photosystem II (PS II) membranes from the green alga Chlamydomonas reinhardtii. The isolation procedure is a modification of methods evolved for spinach (Berthold et al. 1981). The purity and integrity of the PS II preparations have been assesssed on the bases of the polypeptide pattern in SDS-PAGE, the rate of oxygen evolution, the EPR multiline signal of the S2 state, the room temperature chlorophyll a fluorescence yield, the 77 K emission spectra, and the P700 EPR signal at 300 K. These data show that the PS II characteristics are increased by a factor of two in PS II preparations as compared to thylakoid samples, and the PS I concentration is reduced by approximately a factor ten compared to that in thylakoids.Abbreviations BSA bovine serum albumin - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,5-dimethyl-p-benzoquinone - EDTA ethylenediamine tetraacetic acid - EPR electron paramagnetic resonance - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2-[N-Morpholino]ethanesulfonic acid - OEE oxygen evolving enhancer - PS II photosystem II - SDS-PAGE sodium dedocyl sulfate polyacrylamide gel electrophoresis  相似文献   

18.
We have developed a rapid method for isolation of the Photosystem I (PS1) complex from Chlamydomonas reinhardtii using epitope tagging. Six histidine residues were genetically added to the N-terminus of the PsaA core subunit of PS1. The His6-tagged PS1 could be purified with a yield of 80–90% from detergent-solubilized thylakoid membranes within 3 h in a single step using a Ni-nitrilotriacetic acid (Ni-NTA) column. Immunoblots and low-temperature fluorescence analysis indicated that the His6-tagged PS1 preparation was highly pure and extremely low in uncoupled pigments. Moreover, the introduced tag appeared to have no adverse effect upon PS1 structure/function, as judged by photochemical assays and EPR spectroscopy of isolated particles, as well as photosynthetic growth tests of the tagged strain. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Mitochondria were isolated from autotrophically grown Chlamydomonas reinhardtii cell-wall-less mutant CW 92. The cells were broken by vortexing with glass beads, and the mitochondria were collected by differential centrifugation and purified on a Percoll gradient. The isolated mitochondria oxidized malate, pyruvate, succinate, NADH, and [alpha]-ketoglutarate. Respiratory control was obtained with malate (2.0) and pyruvate (2.2) but not with the other substrates. From experiments with KCN and salicylhydroxamic acid, it was estimated that the capacity of the cytochrome pathway was at least 100 nmol O2 mg-1 protein min-1 and the capacity of the alternative oxidase was at least 50 nmol O2 mg-1 protein min-1. A low sensitivity to oligomycin indicates some difference in the properties of the mitochondrial ATPase from Chlamydomonas as compared to higher plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号