首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemocyanins of the horseshoe crab Limulus polyphemus (48-mer), the tarantula Eurypelma californicum (24-mer), and the lycosid spider Cupiennius salei (dodecamer, hexamer) were dissociated into subunits, the subunits isolated and studied by two-dimensional immunoelectrophoresis for interspecific cross-reactivities. Among the subunits a to g of Eurypelma on the one side, and I to VI of Limulus on the other, a number of cross-reactions were obtained which agree with the topologic subunit positions in the published models of quaternary structure: a = II, b-c = V-VI, d = IV, e = I, f = IIIb, g = IIIa (IIa). However, cross-reactivity was only strong in the following combinations: a/II, d/IV, b-c/V-VI (the monomers of the two heterodimers could not be correlated individually). A rather weak cross-reaction was obtained in the case of e/I and g/IIIa (IIa); a cross-reaction between f and IIIb was almost undetectable. On the other hand, f/IV clearly cross-reacted, and so did e/IIIa (IIa), which apparently is not in agreement with the two models of quaternary structure. These unexpected relationships, however, indicate the possible phylogeny of the subunits. Antiserum against Cupiennius hemocyanin precipitated subunit f of Eurypelma and subunit IV of Limulus and, moreover, revealed common antigen determinants present on these subunits. Denaturation of hemocyanin subunits of the three species with 8M urea yielded a completely different immunological behavior in that in all intra- and interspecific combinations the reaction of immunological identity was obtained. The published models of quaternary structure and a possible subunit phylogeny of cheliceratan hemocyanins is discussed in view of the present results and the results of the preceding paper. [Markl, J. et al. (1984) Hoppe-Seyler's Z. Physiol. Chem. 365, 619-631.]  相似文献   

2.
Hemocyanins are large copper-containing respiratory proteins found in many arthropod species. Scorpions and orthognath spiders possess a highly conserved 4 x 6-mer hemocyanin that consists of at least seven distinct subunit types (termed a to g). However, many "modern" entelegyne spiders such as Cupiennius salei differ from the standard arachnid scheme and have 2 x 6-mer hemocyanins. Here we report the complete primary structure of the 2 x 6-mer hemocyanin of C. salei as deduced from cDNA sequencing, gel electrophoresis, and matrix-assisted laser desorption spectroscopy. Six distinct subunit types (1 through 6) and three additional allelic sequences were identified. Each 1 x 6-mer half-molecule most likely is composed of subunits 1-6, with subunit 1 linking the two hexamers via a disulfide bridge located in a C-terminal extension. The C. salei hemocyanin subunits all belong to the arachnid g-type, whereas the other six types (a-f) have been lost in evolution. The reconstruction of a complex hemocyanin from a single g-type subunit, which commenced about 190 million years ago and was completed about 90 million years ago, might be explained by physiological and behavioral changes that occurred during the evolution of the entelegyne spiders.  相似文献   

3.
The hemocyanins of the scorpions Leiurus quinquestriatus and Androctonus australis, the tarantula Eurypelma californicum (all 24-mers), and the lycosid spider Cupiennius salei (dodecamer) were dissociated into subunits, the subunits isolated and studied by two-dimensional immunoelectrophoresis for interspecific cross-reactivities. Androctonus hemocyanin yielded a pattern of 8 subunit types in agreement with data from Lamy et al. (1979, Arch. Biochem. Biophys. 193, 140-149). Leiurus hemocyanin is also composed of 8 immunologically distinct subunits which could be assigned to the pattern of Androctonus in a subunit-to-subunit correlation. The subunit designations 1 to 6 of Lamy et al. could be adopted for both scorpion hemocyanins; however, in the present communication, Lamy's subunits 3A/3B are designated as 3'/3", because we could not unequivocally decide if 3' = 3A and 3" = 3B or vice versa. The 7 subunit types a to g of Eurypelma hemocyanin could be correlated with the scorpion hemocyanin subunits as follows: a = 3', b = 5B, c = 3C, d = 5A, e = 6, f = 2, g = 4. Additional cross-reactivities were detected between e/4, and f/5A, respectively. No subunit of Eurypelma hemocyanin is homologous to scorpion 3", which could not be precipitated by anti-Eurypelma antiserum. Antiserum against Cupiennius hemocyanin precipitated subunit f of Eurypelma and subunits 2 and 5A of scorpion hemocyanin. The published models of quaternary structure and a possible subunit phylogeny of arachnidan hemocyanins are discussed in view of the present results.  相似文献   

4.
5.
The reaction of Limulus polyphemus hemocyanin with a dye, bromthymol blue, was examined by equilibrium dialysis, spectrophotometric titration and stopped-flow methods. Oxy-hemocyanin contained one binding site per hexamer unit. The dye binding was linked to oxygenation, and the affinity of the dye for the oxy form was about 10 times as high as that for the deoxy form. Conversely, the dye increased the O2 affinity of hemocyanin. Hemocyanin showed a simple hyperbolic binding curve in the bromthymol blue titration, whereas the time course of the reaction was generally biphasic. It was inferred from the kinetic analyses that the reaction proceeds in two steps. The first bimolecular step is characterized by an increase in the apparent pKa of the bound dye, while the second unimolecular step by a red shift of the absorption band of the unionized dye. The dye binding to partially oxygenated hemocyanin was examined spectrophotometrically; the fractional change in the binding was found to be ahead of the increase in the average degree of O2 saturation. It was concluded that the structural changes in hemocyanin which lead to the increased dye affinity take place at an early stage of the ligand binding sequence.  相似文献   

6.
The binding of carbon monoxide to hemocyanin from the crab Scylla serrata has been studied by thin layer optical absorption and front face fluorescence techniques. The binding to the monomeric form is completely noncooperative whereas the binding to the native oligomeric form is found to be weakly but definitely cooperative. An analysis based on the MWC model of the oxygen and carbon monoxide binding curves indicates that the allosteric constant, L, describing the equilibrium between the 2 unligated forms is different for each ligand. This implies that at least 3 allosteric forms are needed to characterize the binding of oxygen and carbon monoxide to this hemocyanin.  相似文献   

7.
8.
The transport of oxygen in the hemolymph of many arthropod and mollusc species is mediated by large copper-proteins that are referred to as hemocyanins. Arthropod hemocyanins are composed of hexamers and oligomers of hexamers. Arachnid hemocyanins usually form 4 x 6-mers consisting of seven distinct subunit types (termed a-g), although in some spider taxa deviations from this standard scheme have been observed. Applying immunological and electrophoretic methods, six distinct hemocyanin subunits were identified in the red-legged golden orb-web spider Nephila inaurata madagascariensis (Araneae: Tetragnathidae). The complete cDNA sequences of six subunits were obtained that corresponded to a-, b-, d-, e-, f- and g-type subunits. No evidence for a c-type subunit was found in this species. The inclusion of the N. inaurata hemocyanins in a multiple alignment of the arthropod hemocyanins and the application of the Bayesian method of phylogenetic inference allow, for the first time, a solid reconstruction of the intramolecular evolution of the chelicerate hemocyanin subunits. The branch leading to subunit a diverged first, followed by the common branch of the dimer-forming b and c subunits, while subunits d and f, as well as subunits e and g form common branches. Assuming a clock-like evolution of the chelicerate hemocyanins, a timescale for the evolution of the Chelicerata was obtained that agrees with the fossil record.  相似文献   

9.
The interaction of 4',6-diamidino-2-phenylindole (DAPI) with Carcinus maenas hemocyanin has been investigated by steady state fluorescence, dynamic fluorescence and circular dichroism measurements. The dye binds to apohemocyanin (without copper) as well as to oxygenated hemocyanin and to deoxygenated hemocyanin with very similar affinities (kd approximately equal to 1 microM ) and number of binding sites (one per subunit). In contrast, the fluorescence quantum yield enhancement of DAPI bound to oxygenated hemocyanin is nearly 60% lower than that observed for deoxygenated and apo forms. The decrease of fluorescence of the dye bound to deoxygenated hemocyanin is a sigmoidal function of the oxygen partial pressure, specular to that observed by following the absorbance of the copper-oxygen charge transfer band at 340 nm. This result provides preliminary evidence that DAPI may be used as a functional probe to monitor the cooperative binding of oxygen to the protein. The higher fluorescence quantum yield of DAPI bound to either apohemocyanin or deoxygenated protein is characterized by a single fluorescence decay with lifetime of about 3 ns, while with the oxygenated protein two components of about 1 ns and 3.0 ns are observed. This result is interpreted assuming the existence of two rotamers of DAPI in solution (Szabo et al. Photochem. Photobiol. 44 (1986) 143-150) both able to interact with oxygenated hemocyanin but only one to deoxygenated and apo forms. We conclude that the different fluorescence behaviour of the dye induced by the presence of oxygen bound to the protein is probably due to a structural change of hemocyanin in cooperative interaction with oxygen. Furthermore, the interaction is confirmed by the induced negative ellipticity of DAPI bound to apohemocyanin and deoxy-hemocyanin and by the increase of fluorescence anisotropy of DAPI bound to all forms of protein investigated.  相似文献   

10.
Oxygen binding and subunit interactions in Helix pomatia hemocyanin   总被引:1,自引:0,他引:1  
R van Driel 《Biochemistry》1973,12(14):2696-2698
  相似文献   

11.
L-Lactate raises the oxygen affinity of Cancer magister hemocyanin. The L-lactate analogs, D-lactate, glycolate and 2-methyl-lactate cause smaller increases in an oxygen binding affinity. Other analogs have no detectable effect. These data suggest that L-lactate binds to the hemocyanin at all four positions around the chiral carbon. The carboxyl and hydroxyl groups are required for activity. The protein can only partially distinguish between the methyl group and hydrogen atom.  相似文献   

12.
Hemocyanins from Crustacea usually are found as 1 × 6 or 2 × 6-meric assemblies. An exception is the hemocyanin isolated from thalassinidean shrimps where the main component is a 24-meric structure. Our analysis of oxygen binding data of the thalassinidean shrimp Upogebia pusilla based on a three-state MWC-model revealed that despite the 24-meric structure the functional properties can be described very well based on the hexamer as allosteric unit. In contrast to the hemocyanins from other thalassinidean shrimps the oxygen affinity of hemocyanin from U. pusilla is increased upon addition of l-lactate. A particular feature of this hemocyanin seems to be that l-lactate already enhances oxygen affinity under resting conditions which possibly compensates the rather low intrinsic affinity observed in absence of l-lactate. The fast rate of oxygen dissociation might indicate that in this hemocyanin a higher cooperativity is less important than a fast response of saturation level to changes in oxygen concentration.  相似文献   

13.
The binding of 1-anilino-8-naphthalene sulfonate (ansyl) to native and copper-free hemocyanin of Octopus vulgaris has been studied in different conditions by measuring the fluorescence properties of the probe in the presence of hemocyanin. Native hemocyanin, either in the oxygenated or in the deoxygenated state, does not bind ansyl. The binding of ansyl with apohemocyanin induces a strong increase (from 0.004 to 0.6 -- 0.7) of the quantum yield and a blue shift from 520 nm to 460 nm of the emission maximum indicating the presence of ansyl binding sites in the protein. Experimental evidence is reported that the binding occurs at the copper-binding site of the protein. The dissociation constants of the ansyl-hemocyanin complexes are equal to about 10(-4) M, i.e. they are of the same order of those obtained with other proteins. The number of binding sites (n) of apohemocyanin for ansyl depends on the conformational state of the protein and ranges from 0.15 -- 0.80 mol/mol protein (Mr 50,000), depending on pH, ionic strength, and urea concentration. A negative interaction between the ansyl binding sites has been suggested.  相似文献   

14.
The functional relevance of oxygen transport by hemocyanin of the Antarctic octopod Megaleledone senoi and of the eurythermal cuttlefish Sepia officinalis was analyzed by continuous and simultaneous recordings of changes in pH and hemocyanin oxygen saturation in whole blood at various temperatures. These data were compared to literature data on other temperate and cold-water cephalopods (octopods and giant squid). In S. officinalis, the oxygen affinity of hemocyanin changed at deltaP50/degrees C = 0.12 kPa (pH 7.4) with increasing temperatures; this is similar to observations in temperate octopods. In M. senoi, thermal sensitivity was much smaller (<0.01 kPa, pH 7.2). Furthermore, M. senoi hemocyanin displayed one of the highest levels of oxygen affinity (P50 < 1 kPa, pH 7.6, 0 degrees C) found so far in cephalopods and a rather low cooperativity (n50 = 1.4 at 0 degrees C). The pH sensitivity of oxygen binding (delta log P50/delta pH) increased with increasing temperature in both the cuttlefish and the Antarctic octopod. At low PO2 (1.0 kPa) and pH (7.2), the presence of a large venous oxygen reserve (43% saturation) insensitive to pH reflects reduced pH sensitivity and high oxygen affinity in M. senoi hemocyanin at 0 degrees C. In S. officinalis, this reserve was 19% at pH 7.4, 20 degrees C, and 1.7 kPa O2, a level still higher than in squid. These findings suggest that the lower metabolic rate of octopods and cuttlefish compared to squid is reflected in less pH-dependent oxygen transport. Results of the hemocyanin analysis for the Antarctic octopod were similar to those reported for Vampyroteuthis--an extremely high oxygen affinity supporting a very low metabolic rate. In contrast to findings in cold-adapted giant squid, the minimized thermal sensitivity of oxygen transport in Antarctic octopods will reduce metabolic scope and thereby contribute to their stenothermality.  相似文献   

15.
Commercial lyophilized preparations of yeast alcohol dehydrogenase from Boehringer G.m.b.H. (Mannheim, Germany) bind 2 mols of reduced coenzyme/144000 g of enzyme (1). After the purification by a DEAE-Sephadex column chromatography, the coenzyme binding capacity is raised to 4 mols of NADH/mol of enzyme. Commercial preparations and ionexchange-purified preparations are homogeneous on the ionexchange column chromatography and the disc gel electrophoresis, after reduction with thioglycolic acid. Ionexchange chromatography does not increase the -SH titer, zinc content and the specific activity of enzyme. It is suggested that ionexchange chromatography raises the NADH-binding capacity by removing some impurities present in commercial enzyme preparations.  相似文献   

16.
Functional heterogeneity in O2 or CO binding of sites of dissociated molluscan hemocyanin polypeptide chains (Helix pomatia and Octopus vulgaris) has been estimated by an analysis of accurate noncooperative binding curves. Three types of experiments were performed: pure O2 or CO binding, competitive displacement of one ligand by the other, and simultaneous removal of both gases from protein partially saturated with O2 and CO. The data were analyzed in terms of a model which has two fractions of sites with different properties for O2 and CO. The relative proportion of the different binding sites and their affinity constant values were found by the combined use of the three different procedures. All species show a marked functional heterogeneity of sites for O2 binding, while for CO binding it has been observed only in the case of H. pomatia beta-hemocyanin. Moreover, in all three molluscan hemocyanins examined, the two classes of O2-binding sites, although present in different proportions within the polypeptide chains, display similar affinity constant values. The data reported show a good consistency with results obtained using digested and isolated domains, providing confidence in the analytical procedure used. From comparison of the O2/CO affinity ratios (KO2, KCO) of each class it may be suggested that the difference in O2 affinity of two kinds of binding sites is related to a different local structure of the active sites. The results, moreover, unequivocally confirm that binding and displacement of two gaseous ligands to hemocyanin occur by a simple competitive mechanism, although the binding site is structurally complex and the two ligands are bound with different geometries.  相似文献   

17.
Oxygen binding to hemocyanin: a resonance Raman spectroscopic study   总被引:2,自引:0,他引:2  
Oxygenation of hemocyanin gives rise to resonance Raman peaks at 742 and 282 cm?1. The 742 cm?1 peak which is in resonance with the 575 nm charge transfer band shifts to 704 cm?1 when 18O2 is substituted for 16O2. Our results establish that the bound oxygen is in the form of peroxide (O22?). The 282 cm?1 peak which is in resonance with the 340 nm optical transition is insensitive to isotopic substitution, suggesting that the 282 cm?1 peak corresponds to a vibration involving the magnetically-coupled Cu(II)··Cu(II) centers.  相似文献   

18.
Oxygen binding by hemocyanin from Levantina hierosolima was studied at pH 7.30, in solutions containing calcium in the concentration range 0-1 M. The binding was found to be cooperative, the degree of cooperativity being calcium concentration dependent. The dependence on calcium concentration of the affinity toward oxygen for both deoxygenated and oxygenated hemocyanin was interpreted in terms of two oxygen-linked calcium ions, one promoting and the other opposing oxygen binding. The results show that cooperativity may be fully explained on the basis of a coupling of the free energy of binding between calcium and oxygen.  相似文献   

19.
Menze MA  Hellmann N  Decker H  Grieshaber MK 《Biochemistry》2005,44(30):10328-10338
In many crustaceans, changing concentrations of several low molecular weight compounds modulates hemocyanin oxygen binding, resulting in lower or higher oxygen affinities of the pigment. The nonphysiological effector caffeine and the physiological modulator urate, the latter accumulating in the hemolymph of the lobster Homarus vulgaris during hypoxia, increase hemocyanin oxygen affinity and decrease cooperativity of oxygen binding. To derive a model that describes the mechanism of allosteric interaction between hemocyanin and oxygen in the presence of urate or caffeine, studies of oxygen, urate, and caffeine binding to hemocyanin were performed. Exposure of lobster hemocyanin to various pH values between 7.25 and 8.15 resulted in a decrease of p50. In this pH interval, p50 decreases from 95 to 11 Torr without effectors and from 49 to 6 Torr and from 34 to 5 Torr in the presence of 1 mM urate or caffeine, respectively. Thus, the allosteric effects induced by protons and urate or caffeine are coupled. In contrast, isothermal titration calorimetry did not reveal any differences in binding enthalpy (DeltaH degrees ) for urate or caffeine under either normoxic or hypoxic conditions at different pH values. Despite these apparently conflicting results, they can be explained by the nested MWC model if two different types of modulator binding sites are assumed, an allosteric and a nonallosteric type of site. Simulations of in vivo conditions with this model indicate that the naturally occurring modulator urate is physiologically relevant in H. vulgaris only during hypoxic conditions, i.e., either during environmental oxygen limitation or extensive exercise.  相似文献   

20.
The effect of oxygen on the distribution of hemocyanin from Levantina hierosolima among the three sedimenting species 20, 60, and 100 S was determined under two sets of experimental conditions: (a) at pH 7.63 in the absence of Ca2+, where oxygen binding in noncooperative; (b) at pH 8.20 in the presence of 2 x 10-3 M Ca2+, where oxygen binding is cooperative. A comparison of the results in the two cases eliminates the possibility that equilibrium between species with different oxygen affinities is responsible for the cooperative behavior. Cooperative oxygen binding was demonstrated for the 20S subunits at pH 8.80 and 1 x 10-3 M Ca2+. Under these conditions, the concentration of calcium is sufficient to affect the oxygen affinity, but the concentration of calcium plus proton is not sufficient to bring about association. The findings exclude interactions among 20S subunits as a basis for cooperativity in hemocyanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号