首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I G Young  S Anderson 《Gene》1980,12(3-4):257-265
Bovine-heart mitochondrial DNA from a single animal was isolated and fragments representative of the entire genome cloned into multicopy plasmid vectors to facilitate determination of its complete nucleotide sequence. We present here the sequence of the region covering the gene for cytochrome oxidase subunit II. Comparison of this sequence with the amino acid sequence of the homologous beef-heart protein has enabled the determination of most of the bovine mitochondrial genetic code. The code differs from the "universal" genetic code in that UGA codes for tryptophan and not termination, and AUA codes for methionine and not isoleucine. The only codon family not represented is the AGA/AGG pair normally used for arginine; evidence from other genes suggests that these code for termination in bovine mitochondria. The sequence presented also includes the adjacent tRNAAsp and tRNALys genes. The tRNAAsp gene is separated by one nucleotide from the 5' end of the COII gene and only three bases separate the 3' end of this gene and the adjacent tRNALys gene. This highly compact gene organisation is very similar to that found in the corresponding region of the human mitochondrial genome and the gene arrangement is identical. The structure of the respective bovine and human tRNAs vary primarily the "D-" and "T psi C-loops".  相似文献   

2.
In prokaryotes, lateral gene transfer across chromosomal lineages may be mediated by plasmids, phages, transposable elements, and other accessory DNA elements. However, the importance of such transfer and the evolutionary forces that may restrict gene exchange remain largely unexplored in native settings. In this study, tests of phylogenetic congruence are employed to explore the range of horizontal transfer of symbiotic (sym) loci among distinct chromosomal lineages of native rhizobia, the nitrogen-fixing symbiont of legumes. Rhizobial strains isolated from nodules of several host plant genera were sequenced at three loci: symbiotic nodulation genes (nodB and nodC), the chromosomal housekeeping locus glutamine synthetase II (GSII), and a portion of the 16S rRNA gene. Molecular phylogenetic analysis shows that each locus generally subdivides strains into the same major groups, which correspond to the genera Rhizobium, Sinorhizobium, and Mesorhizobium. This broad phylogenetic congruence indicates a lack of lateral transfer across major chromosomal subdivisions, and it contrasts with previous studies of agricultural populations showing broad transfer of sym loci across divergent chromosomal lineages. A general correspondence of the three rhizobial genera with major legume groups suggests that host plant associations may be important in the differentiation of rhizobial nod and chromosomal loci and may restrict lateral transfer among strains. The second major result is a significant incongruence of nod and GSII phylogenies within rhizobial subdivisions, which strongly suggests horizontal transfer of nod genes among congenerics. This combined evidence for lateral gene transfer within, but not between, genetic subdivisions supports the view that rhizobial genera are "reproductively isolated" and diverge independently. Differences across rhizobial genera in the specificity of host associations imply that the evolutionary dynamics of the symbiosis vary considerably across lineages in native settings.   相似文献   

3.
Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.  相似文献   

4.
The universal ancestor at the root of the species tree of life depicts a population of organisms with a surprising degree of complexity, posessing genomes and translation systems much like that of microbial life today. As the first life forms were most likely to have been simple replicators, considerable evolutionary change must have taken place prior to the last universal common ancestor. It is often assumed that the lack of earlier branches on the tree of life is due to a prevalence of random horizontal gene transfer that obscured the delineations between lineages and hindered their divergence. Therefore, principles of microbial evolution and ecology may give us some insight into these early stages in the history of life. Here, we synthesize the current understanding of organismal and genome evolution from the perspective of microbial ecology and apply these evolutionary principles to the earliest stages of life on Earth. We focus especially on broad evolutionary modes pertaining to horizontal gene transfer, pangenome structure, and microbial mat communities.  相似文献   

5.
The Tree of Life hypothesis frames the evolutionary process as a series of events whereby lineages diverge from one another, thus creating the diversity of life as descendent lineages modify properties from their ancestors. This hypothesis is under scrutiny due to the strong evidence for lateral gene transfer between distantly related bacterial taxa, thereby providing extant taxa with more than one parent. As a result, one argues, the Tree of Life becomes confounded as the original branching structure is gradually superseded by reticulation, ultimately losing its ability to serve as a model for bacterial evolution. Here we address a more fundamental issue: is there a Tree of Life that results from bacterial evolution without considering such lateral gene transfers? Unlike eukaryotic speciation events, lineage separation in bacteria is a gradual process that occurs over tens of millions of years, whereby genetic isolation is established on a gene-by-gene basis. As a result, groups of closely related bacteria, while showing robust genetic isolation as extant lineages, were not created by an unambiguous series of lineage-splitting events. Rather, a temporal fragmentation of the speciation process results in cognate genes showing different genetic relationships. We argue that lineage divergence in bacteria does not produce a tree-like framework, and inferences drawn from such a framework have the potential to be incorrect and misleading. Therefore, the Tree of Life is an inappropriate paradigm for bacterial evolution regardless of the extent of gene transfer between distantly related taxa.  相似文献   

6.
Lateral gene transfer plays an important role in the evolution of life. Events of ancient gene transfer can transmit genetic novelties to descendent lineages and subsequently shape their genetic systems. We here present the analyses of the gene encoding tyrosyl-tRNA synthetase (tyrRS), which reveal two eukaryotic tyrRS lineages, one including the opisthokonts and the other the remaining eukaryotes. The different origins of tyrRS lineages between the opisthokonts and the remaining eukaryotes indicate a likely case of ancient lateral gene transfer of tyrRS from an archaeon to the opisthokonts, which lends further support for the monophyly of the latter group. Ancient paralogy followed by differential gene loss is an alternative, albeit less parsimonious explanation for the distribution of the two eukaryotic tyrRS types. In either case, the presence of a haloarchaeal tyrRS type in the opisthokonts marks this group as monophyletic. This finding also points to the potential utility of ancient gene transfer events as molecular markers for major organismal lineages.  相似文献   

7.
8.
Recent progress in data collection and analysis has changed the study of origin of life from an area dominated by speculation into a field abundant with testable hypotheses. This review discusses advances in the following areas: the fossil recordsd; the 'retrodiction' of biochemical pathways; and contradictions between different molecular phylogenies. The latter indicates a limited number of horizontal gene transfers during the early evolution. However, these cases of horizontal gene transfer are so infrequent that they can be detected as exceptions in an otherwise coherent picture. Cases of horizontal gene transfer can be recognized within the background of the majority consensus of molecular markers. The fusion of separate lineages to form new species is revealed by the simultaneous horizontal transfer of several independent genes.  相似文献   

9.
The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.  相似文献   

10.
To probe the evolution and phylogeny of Listeria monocytogenes from defined host species and environments, L. monocytogenes isolates from human (n = 60) and animal (n = 30) listeriosis cases and food samples (n = 30) were randomly selected from a larger collection of isolates (n = 354) obtained in New York State between 1999 and 2001. Partial sequencing of four housekeeping genes (gap, prs, purM, and ribC), one stress response gene (sigB), and two virulence genes (actA and inlA) revealed between 11 (gap) and 33 (inlA) allelic types as well as 52 sequence types (unique combination of allelic types). actA, ribC, and purM demonstrated the highest levels of nucleotide diversity (pi > 0.05). actA and inlA as well as prs and the hypervariable housekeeping genes ribC and purM showed evidence of horizontal gene transfer and recombination. actA and inlA also showed evidence of positive selection at specific amino acid sites. Maximum likelihood phylogenies for all seven genes confirmed that L. monocytogenes contains two deeply separated evolutionary lineages. Lineage I was found to be highly clonal, while lineage II showed greater diversity and evidence of horizontal gene transfer. Allelic types were exclusive to lineages, except for a single gap allele, and nucleotide distance within lineages was much lower than that between lineages, suggesting that genetic exchange between lineages is rare. Our data show that (i) L. monocytogenes is a highly diverse species with at least two distinct phylogenetic lineages differing in their evolutionary history and population structure and (ii) horizontal gene transfer as well as positive selection contributed to the evolution of L. monocytogenes.  相似文献   

11.
Determining how genetic diversity is structured between populations that span the divergence continuum from populations to biological species is key to understanding the generation and maintenance of biodiversity. We investigated genetic divergence and gene flow in eight lineages of birds with a trans‐Beringian distribution, where Asian and North American populations have likely been split and reunited through multiple Pleistocene glacial cycles. Our study transects the speciation process, including eight pairwise comparisons in three orders (ducks, shorebirds and passerines) at population, subspecies and species levels. Using ultraconserved elements (UCEs), we found that these lineages represent conditions from slightly differentiated populations to full biological species. Although allopatric speciation is considered the predominant mode of divergence in birds, all of our best divergence models included gene flow, supporting speciation with gene flow as the predominant mode in Beringia. In our eight lineages, three were best described by a split‐migration model (divergence with gene flow), three best fit a secondary contact scenario (isolation followed by gene flow), and two showed support for both models. The lineages were not evenly distributed across a divergence space defined by gene flow (M) and differentiation (FST), instead forming two discontinuous groups: one with relatively shallow divergence, no fixed single nucleotide polymorphisms (SNPs), and high rates of gene flow between populations; and the second with relatively deeply divergent lineages, multiple fixed SNPs, and low gene flow. Our results highlight the important role that gene flow plays in avian divergence in Beringia.  相似文献   

12.
Darwin suggested that all life on Earth could be phylogenetically related. Modern biology has confirmed Darwin??s extraordinary insight; the existence of a universal genetic code is just one of many evidences of our common ancestry. Based on the three domain phylogeny proposed by Woese and Fox in the early 1970s that all living beings can be classified on one of three main cellular lineages (Archaea, Bacteria, and Eukarya), it is possible to reconstruct some of the characteristics of the Last Universal Common Ancestor or cenancestor. Comparative genomics of organisms from the three domains has shown that the cenancestor was not a direct descendant of the prebiotic soup nor a primitive cellular entity where the genotype and the phenotype had an imprecise relationship (i.e., a progenote), rather it was an organism similar in complexity to extant cells. Due to the process of horizontal gene transfer and secondary gene losses, several questions regarding the nature of the cenancestor remain unsolved. However, attempts to infer its nature have led to the identification of a set of universally conserved genes. The research on the nature of the last universal common ancestor promises to shed light on fundamental aspects of living beings.  相似文献   

13.
Parisotoma notabilis is the most common species of Collembola in Europe and is currently designated as ubiquist. This species has been extensively used in numerous studies and is considered as well characterized on a morphological ground. Despite the homogeneity of its morphology, the sequencing of the barcoding fragment (5′ end of COI) for several populations throughout Europe and North America revealed four distinct genetic lineages. The divergence found between these lineages was similar to the genetic distance among other species of the genus Parisotoma included in the analysis. All four lineages have been confirmed by the nuclear gene 28S. This congruence between mitochondrial and nuclear signals, as well as the geographical distribution pattern of lineages observed in Europe, supports the potential specific status of these lineages. Based on specimens from the type locality (Hamburg), the species name was successfully assigned to one of these lineages. This finding raises several problems as Parisotoma notabilis has been widely used in many ecological studies. Accumulation of new data for the different lineages detected, especially ecological information and life history traits, is needed to help resolve this situation.  相似文献   

14.
Despite the potential for long-distance gene flow in the sea, there is growing evidence of cryptic genetic diversity in many marine taxa. Understanding the geographic distribution of cryptic lineages, as well as the spatial patterns of admixture among them, can have important implications for conservation planning. Here, we explore patterns of divergence in a coral reef fish, the neon goby Elacatinus lori, across the species’ range. First, we use targeted amplicon sequencing to describe the spatial pattern of genetic divergence using two marker types (57 anonymous ddRAD-derived loci and mtDNA cytb). Second, we quantify the degree of admixture and hybridization between two previously-unidentified divergent lineages within Belize. Third, we assess whether the existing group of marine protected areas (MPAs) in Belize protects this cryptic genetic diversity. The results provide strong evidence for two divergent genetic lineages of E. lori within Belize, separated geographically by only 30 km of low-suitability habitat. There is a sharp genetic cline across these 30 km, and evidence of admixture and introgression at the boundary regions of the habitat break. We also show that the broadly-distributed arrangement of MPAs within Belize protects both major lineages as well as subtle structure within-lineages, and therefore may confer protection to co-distributed species that exhibit similar spatial patterns of divergence.  相似文献   

15.
Unlike crown eukaryotic species, microbial species are created by continual processes of gene loss and acquisition promoted by horizontal genetic transfer. The amounts of foreign DNA in bacterial genomes, and the rate at which this is acquired, are consistent with gene transfer as the primary catalyst for microbial differentiation. However, the rate of successful gene transfer varies among bacterial lineages. The heterogeneity in foreign DNA content is directly correlated with amount of genetic headroom intrinsic to a bacterial species. Genetic headroom reflects the amount of potentially dispensable information--reflected in codon usage bias and codon context bias--that can be transiently sacrificed to allow experimentation with functions introduced by gene transfer. In this way, genetic headroom offers a potential metric for assessing the propensity of a lineage to speciate.  相似文献   

16.
Genetic divergence among populations of marine broadcast spawners in the absence of past geological barriers presents an intriguing challenge to understanding speciation in the sea. To determine how differences in life history affect genetic divergence and demographic histories across incomplete dispersal barriers, we conducted a comparative phylogeographic study of three intertidal limpets (Siphonaria spp.) represented on either side of a biogeographic disjunction separating tropical and subtropical marine provinces in southeastern Africa. Using a combination of mitochondrial and nuclear sequence data, we identified two distinct evolutionary lineages each in both Siphonaria concinna (a planktonic disperser) and S. nigerrima (a direct developer), and panmixia in a second planktonic disperser, S. capensis. Although phylogeographic breaks were present in two species, how these became established differed depending on their life histories. In the direct developer, lack of gene flow following divergence, and demographic expansion from a small initial size in the species' subtropical population, point to a single colonisation event. In contrast, the evolutionary lineages of the planktonic disperser split into two genetic lineages with much larger initial population sizes and southward gene flow continued at least periodically, indicating that divergence in this species may have been driven by a combination of reduced larval dispersal and divergent selection. These findings help explain why the presence or absence of phylogeographic breaks often appears to be independent of species' dispersal potential.  相似文献   

17.
Mutation and subsequent recombination events create genetic diversity, which is subjected to natural selection. Bacterial mismatch repair (MMR) deficient mutants, exhibiting high mutation and homologous recombination rates, are frequently found in natural populations. Therefore, we have explored the possibility that MMR deficiency emerging in nature has left some "imprint" in the sequence of bacterial genomes. Comparative molecular phylogeny of MMR genes from natural Escherichia coli isolates shows that, compared to housekeeping genes, individual functional MMR genes exhibit high sequence mosaicism derived from diverse phylogenetic lineages. This apparent horizontal gene transfer correlates with hyperrecombination phenotype of MMR-deficient mutators. The sequence mosaicism of MMR genes may be a hallmark of a mechanism of adaptive evolution that involves modulation of mutation and recombination rates by recurrent losses and reacquisitions of MMR gene functions.  相似文献   

18.
It remains controversial why mitochondria and chloroplasts retain the genes encoding a small subset of their constituent proteins, despite the transfer of so many other genes to the nucleus. Two candidate obstacles to gene transfer, suggested long ago, are that the genetic code of some mitochondrial genomes differs from the standard nuclear code, such that a transferred gene would encode an incorrect amino acid sequence, and that the proteins most frequently encoded in mitochondria are generally very hydrophobic, which may impede their import after synthesis in the cytosol. More recently it has been suggested that both these interpretations suffer from serious "false positives" and "false negatives": genes that they predict should be readily transferred but which have never (or seldom) been, and genes whose transfer has occurred often or early, even though this is predicted to be very difficult. Here I consider the full known range of ostensibly problematic such genes, with particular reference to the sequences of events that could have led to their present location. I show that this detailed analysis of these cases reveals that they are in fact wholly consistent with the hypothesis that code disparity and hydrophobicity are much more powerful barriers to functional gene transfer than any other. The popularity of the contrary view has led to the search for other barriers that might retain genes in organelles even more powerfully than code disparity or hydrophobicity; one proposal, concerning the role of proteins in redox processes, has received widespread support. I conclude that this abandonment of the original explanations for the retention of organellar genomes has been premature. Several other, relatively minor, obstacles to gene transfer certainly exist, contributing to the retention of relatively many organellar genes in most lineages compared to animal mtDNA, but there is no evidence for obstacles as severe as code disparity or hydrophobicity. One corollary of this conclusion is that there is currently no reason to suppose that engineering nuclear versions of the remaining mammalian mitochondrial genes, a feat that may have widespread biomedical relevance, should require anything other than sequence alterations obviating code disparity and causing modest reductions in hydrophobicity without loss of enzymatic function.  相似文献   

19.
The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii . The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii , but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.  相似文献   

20.
We unite genetic data with a robust test of niche divergence to test the hypothesis that patterns of gene flow between two lineages of the nine-banded armadillo are influenced by their climatic niches. We collected Geographical Information System (GIS) data on climate using locality information from 111 individuals from two lineages that had associated genetic material. We tested whether niches of these lineages were more conserved or divergent than the background environments of their geographic ranges and found evidence for niche conservatism on two axes and no evidence for divergence on any axis. To address the role of niche similarity in gene flow, we genotyped the 111 individuals at five microsatellite loci and tested whether admixed individuals tended to be located in parts of multidimensional environmental space (E-space) shared between the two lineages. We observed an asymmetrical pattern of overlap, in which the West lineage's E-space was almost completely included inside East lineage's E-space. Genetic admixture levels were significantly higher in the West lineage and, for both lineages, in shared portions of E-space. This suggests that niche similarity can facilitate gene flow among disjunct groups with moderate-to-good dispersal capabilities, contrasting with the prevailing view of niche conservatism as a diversifying force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号