首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】意大利蜜蜂(Apis mellifera ligustica,简称意蜂)是西方蜜蜂(Apis mellifera)的亚种之一。蜜蜂球囊菌(Ascosphaera apis)侵染意蜂幼虫导致白垩病。本研究对西方蜜蜂裸表皮蛋白(naked cuticle, Nkd)进行保守基序预测和系统进化分析,并通过RNAi明确nkd基因对意蜂工蜂幼虫体重及宿主响应蜜蜂球囊菌胁迫的免疫应答的影响,以期丰富西方蜜蜂基因nkd的信息,并揭示意蜂幼虫nkd的功能。【方法】通过MEME软件预测西方蜜蜂和其他9个物种Nkd蛋白的保守基序。采用MEGA X软件对西方蜜蜂及其他9个物种的Nkd蛋白进行系统进化分析。通过饲喂dsRNA对意蜂幼虫肠道内的nkd进行RNAi。使用电子天平对幼虫进行称重。利用RT-qPCR检测nkd基因的干扰效率及免疫基因的相对表达量。【结果】西方蜜蜂与东方蜜蜂、柑橘凤蝶、家蚕和金凤蝶的Nkd蛋白均含有3个保守基序(motif 1、motif 2 和motif 3),说明上述5个昆虫物种的Nkd具有较高的保守性。西方蜜蜂与东方蜜蜂的Nkd蛋白聚为一支,说明二者的亲缘关系近。与dsRNA-egfp组相比,dsRNA-nkd组5日龄和6日龄幼虫肠道内nkd的表达量均极显著下调(P<0.001),干扰效率分别为49.60%和56.40%。另外,dsRNA-nkd组幼虫体重较dsRNA-egfp组显著下降,说明nkd显著影响幼虫体重。RT-qPCR结果显示,4日龄幼虫肠道内abaecinapidaecinbirc5defensin-1PGRP-S2均被激活表达;5日龄幼虫肠道内abaecinapidaecinbirc5defensin-1均被激活表达,PGRP-S2的表达受到抑制;6日龄幼虫肠道内abaecin被激活表达,而apidaecinbirc5defensin-1PGRP-S2的表达均受到抑制,说明上述5个免疫基因在宿主响应胁迫的过程中呈不同的表达趋势,均参与宿主的免疫应答,nkdabaecinapidaecin的表达存在负向调控关系。【结论】西方蜜蜂的Nkd蛋白含有3个保守基序(motif 1、motif 2和motif 3),西方蜜蜂与东方蜜蜂的Nkd蛋白亲缘关系最近,通过饲喂dsRNA能有效干扰意蜂工蜂幼虫肠道内nkd表达,nkd影响意蜂工蜂幼虫体重及宿主对蜜蜂球囊菌胁迫的免疫应答。  相似文献   

2.
Summary Approximately 30–40% ofDrosophila virilis DNA complementary to clonedDrosophila histone genes is reduced to 3.4-kilobase-pair (kbp) segments by Bgl I or Bgl II digestion. The core histone genes of a 3.4-kbp Bgl II segment cloned in the plasmid pDv3/3.4 have the same order as theD. melanogaster core histone genes in the plasmid cDm500: . Nonetheless, pDv3/3.4 and cDm500 have different histone gene configurations: In pDv3/3.4, the region between the H2B and H3 genes contains 0.35 kbp and cannot encode histone H1; in cDm500, the region contains 2.0 kbp and encodes histone H1. The lack of an H1 gene between the H2B and H3 genes in 30–40% ofD. virilis histone gene clusters suggests that changes in histone gene arrays have occurred during the evolution ofDrosophila. The ancestors of modernDrosophila may have possessed multiple varieties of histone gene clusters, which were subsequently lost differentially in thevirilis andmelanogaster lineages. Alternatively, they may have possessed a single variety, which was rearranged during evolution. The H1 genes ofD. virilis andD. melanogaster did not cross-hybridize in vitro under conditions that maintain stable duplexes between DNAs that are 75% homologous. Consequently,D. virilis H1 genes could not be visualized by hybridization to an H1-specific probe and thus remain unidentified. Our observations suggest that the coding segments in the H1 genes ofD. virilis andD. melanogaster are >25% divergent. Our estimate of sequence divergence in the H1 genes ofD. virilis andD. melanogaster seems high until one considers that the coding sequences of cloned H1 genes from the closely related speciesD. melanogaster andD. simulans are 5% divergent.  相似文献   

3.
Pax group III genes are involved in a number of processes during insect segmentation. In Drosophila melanogaster, three genes, paired, gooseberry and gooseberry-neuro, regulate segmental patterning of the epidermis and nervous system. Paired acts as a pair-rule gene and gooseberry as a segment polarity gene. Studies of Pax group III genes in other insects have indicated that their expression is a good marker for understanding the underlying molecular mechanisms of segmentation. We have cloned three Pax group III genes from the honeybee (Apis mellifera) and examined their relationships to other insect Pax group III genes and their expression patterns during honeybee segmentation. The expression pattern of the honeybee homologue of paired is similar to that of paired in Drosophila, but its expression is modulated by anterior–posterior temporal patterning similar to the expression of Pax group III proteins in Tribolium. The expression of the other two Pax group III genes in the honeybee indicates that they also act in segmentation and nervous system development, as do these genes in other insects.  相似文献   

4.
Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste‐, sex‐, behavior‐, and tissue‐biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity.  相似文献   

5.
Summary Previous studies have demonstrated that the expression of the -amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the -amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.Offprint requests to: D.A. Hickey  相似文献   

6.
Cytochrome proteins perform a broad spectrum of biological functions ranging from oxidative metabolism to electron transport and are thus essential to all organisms. The b-type cytochrome proteins bind heme noncovalently, are expressed in many different forms and are localized to various cellular compartments. We report the characterization of the cytochrome b5 (Cyt-b) gene of Drosophila virilis and compare its structure to the Cyt-b gene of Drosophila melanogaster. As in D. melanogaster, the D. virilis gene is nuclear encoded and single copy. Although the intron/exon structures of these homologues differ, the Cyt-b proteins of D. melanogaster and D. virilis are approximately 75% identical and share the same size coding regions (1,242 nucleotides) and protein products (414 amino acids). The Drosophila Cyt-b proteins show sequence similarity to other b-type cytochromes, especially in the N-terminal heme-binding domain, and may be targeted to the mitochondrial membrane. The greatest levels of similarity are observed in areas of potential importance for protein structure and function. The exon sequences of the D. virilis Cyt-b gene differ by a total of 292 base changes. However, 62% of these changes are silent. The high degree of conservation between species separated by 60 million years of evolution in both the DNA and amino acid sequences suggests this nuclear cytochrome b5 locus encodes an essential product of the Drosophila system.Correspondence to: C.E. Rozek  相似文献   

7.
Members of the cys-loop ligand-gated ion channel (cys-loop LGIC) superfamily mediate neurotransmission in insects and are targets of successful insecticides. We have described the cys-loop LGIC superfamily of the honeybee, Apis mellifera, which is an important crop pollinator and a key model for social interaction. The honeybee superfamily consists of 21 genes, which is slightly smaller than that of Drosophila melanogaster comprising 23 genes. As with Drosophila, the honeybee possesses ion channels gated by acetylcholine, γ-amino butyric acid, glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel (pHCl), CG8916, CG12344 and CG6927. Similar to Drosophila, honeybee cys-loop LGIC diversity is broadened by differential splicing which may also serve to generate species-specific receptor isoforms. These findings on Apis mellifera enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. DQ667181–DQ667195.  相似文献   

8.
Päällysaho S 《Genetica》2002,114(1):73-79
When estimating the level of DNA sequence variation within and between populations or when planning QTL analysis, it is essential to know the location of the genes under study. In the present work, five X chromosomal genes, earlier localised in Drosophila virilis and D. littoralis, were mapped by in situ hybridisation on the larval polytene chromosomes of four other virilis group species, D. a. americana, D. flavomontana, D. lacicola and D. montana. Conjugation of X chromosomes of the most interesting species pairs was studied in interspecific hybrids. Three of the marker genes were used as RFLP markers to examine the occurrence of recombination in D. flavomontana and D. montana hybrid females. The gene arrangement of all species studied, appeared to be different at the proximal end of the X chromosome, which prevented normal conjugation along the most part of the X chromosome. The data illustrating the locations of five X chromosomal marker genes are presented for D. a. americana, D. flavomontana, D. lacicola and D. montana.  相似文献   

9.
Huttunen S  Vieira J  Hoikkala A 《Genetica》2002,115(2):159-167
Genes found to affect male courtship song characters in Drosophila melanogaster are good candidates when tracing genes responsible for species-specific songs in other Drosophila species. It has previously been shown that Thr–Gly repeat length variation at the period gene affects song traits in D. melanogaster, which gives the repetitive regions a special interest. In this work, we have characterised the patterns of nucleotide variation for gene regions containing two Gly and one Gln–Ala repeat in another D. melanogaster song gene, no-on-transient A, in D. virilis group species. The levels of nucleotide variability in D. virilis nonA were similar to those found for other genes of the species, and the gene sequences showed no signs of deviation from neutrality. The Gly 2 repeat preceding the central domain of the gene exhibited length variation, which did not, however, correlate with song variation either within D. virilis or between the species of D. virilis group. The Gly 3 repeat located on the other side of the central domain showed amino acid divergence parallel to the consensus phylogeny of the D. virilis group species. The species of the virilis subgroup having Asn after the first three glycines in this repeat have simple songs with no species-specificity, while the species of the montana subgroup having two Gly or Asn–Ser in this site have unique courtship songs. Amino acid differences between the species in this repeat may, however, reflect species phylogeny rather than have an effect on song divergence per se.  相似文献   

10.
Summary In the dance language of the western honeybee,Apis mellifera, airborne near field sound signals and a sense of hearing are used to communicate the locations of food sources. In the Asian honeybeeApis dorsata similar acoustical signals have been found recently, whereasApis florea does not emit dance sounds to transfer information about the location of food sources. The aim of the present study was to investigate the sense of hearing in these two species. Operant conditioning experiments reveal that both species are able to detect such near field sounds. The results support the hypothesis of acoustical communication inApis dorsata. The auditory sense ofApis florea, which does not use acoustical signals in the dance language, is discussed as a preadaptation for the evolution of an acoustical dance communication in ancestral honeybees.  相似文献   

11.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their mammalian counterparts. Thus, Drosophila melanogaster and Anopheles gambiae each possess 10 nAChR genes while Apis mellifera has 11. Although these are among the smallest nAChR gene families known, receptor diversity can be considerably increased by alternative splicing and mRNA A-to-I editing, thereby generating species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that act on particular pests while sparing beneficial insects. Electrophysiological studies on cultured Drosophila cholinergic neurons show partial agonist actions of the neonicotinoid imidacloprid and super-agonist actions of another neonicotinoid, clothianidin, on native nAChRs. Recombinant hybrid heteromeric nAChRs comprising Drosophila Dα2 and a vertebrate β2 subunit have been instructive in mimicking such actions of imidacloprid and clothianidin. Unitary conductance measurements on native nAChRs indicate that more frequent openings of the largest conductance state may offer an explanation for the superagonist actions of clothianidin.  相似文献   

12.
Varroa destructor mite is currently the most serious threat to the world bee industry. Differences in mite tolerance are reported between two honey bee species Apis mellifera and Apis cerana. Differential gene expression of two honey bee species induced by V. destructor infection was investigated by constructing two suppression subtractive hybridization (SSH) libraries, as first steps toward elucidating molecular mechanisms of Varroa tolerance. From the SSH libraries, we obtained 289 high quality sequences which clustered into 132 unique sequences grouped in 26 contigs and 106 singlets where 49 consisted in A. cerana subtracted library and 83 in A. mellifera. Using BLAST, we found that 85% sequences had counterpart known genes whereas 15% were undescribed. A Gene Ontology analysis classified 51 unique sequences into different functional categories. Eight of these differentially expressed genes, representative of different regulation patterns, were confirmed by qRT-PCR. Upon the mite induction, the differentially expressed genes from both bee species were different, except hex 110 gene, which was up-regulated in A. cerana but down-regulated in A. mellifera, and Npy-r gene, which was down-regulated in both species. In general, most of the differential expression genes were involved in metabolic processes and nerve signaling. The results provide information on the molecular response of these two bee species to Varroa infection.  相似文献   

13.
The effects of the tracheal mite Acarapis woodi on the health of honey bees have been neglected since the prevalence of Varroa mites to Apis mellifera colonies. However, tracheal mite infestation of honey bee colonies still occurs worldwide and could impose negative impact on apiculture. The detection of A. woodi requires the dissection of honey bees followed by microscopic observation of the tracheal sacs. We thus developed PCR methods to detect A. woodi. These methods facilitate rapid and sensitive detection of A. woodi in many honey bee samples for epidemiologic surveys.  相似文献   

14.

Background

Apis mellifera and Apis cerana are two sibling species of Apidae. Apis cerana is adept at collecting sporadic nectar in mountain and forest region and exhibits stiffer hardiness and acarid resistance as a result of natural selection, whereas Apis mellifera has the advantage of producing royal jelly. To identify differentially expressed genes (DEGs) that affect the development of hypopharyngeal gland (HG) and/or the secretion of royal jelly between these two honeybee species, we performed a digital gene expression (DGE) analysis of the HGs of these two species at three developmental stages (newly emerged worker, nurse and forager).

Results

Twelve DGE-tag libraries were constructed and sequenced using the total RNA extracted from the HGs of newly emerged workers, nurses, and foragers of Apis mellifera and Apis cerana. Finally, a total of 1482 genes in Apis mellifera and 1313 in Apis cerana were found to exhibit an expression difference among the three developmental stages. A total of 1417 DEGs were identified between these two species. Of these, 623, 1072, and 462 genes showed an expression difference at the newly emerged worker, nurse, and forager stages, respectively. The nurse stage exhibited the highest number of DEGs between these two species and most of these were found to be up-regulated in Apis mellifera. These results suggest that the higher yield of royal jelly in Apis mellifera may be due to the higher expression level of these DEGs.

Conclusions

In this study, we investigated the DEGs between the HGs of two sibling honeybee species (Apis mellifera and Apis cerana). Our results indicated that the gene expression difference was associated with the difference in the royal jelly yield between these two species. These results provide an important clue for clarifying the mechanisms underlying hypopharyngeal gland development and the production of royal jelly.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-744) contains supplementary material, which is available to authorized users.  相似文献   

15.
Summary A field population of Polistes metricus Say near St. Louis, Missouri was supplemented with dilute Apis mellifera honey and Trichoplusia ni caterpillars during the entire colony development period. Offspring were collected at two times to coincide with emergence of worker and reproductive broods. Food supplementation had no effect on nest size, the number of worker offspring, or the size of workers. Supplemented colonies did produce more females in August but female size was unaffected by supplementation. Supplementation had no effect on the number of males produced, but males were slightly larger on supplemented nests. We interpret these findings in the context of social insect life history theory.Received 30 June 2003; revised 9 December 2003; accepted 18 December 2003.  相似文献   

16.
【背景】东方蜜蜂微孢子虫(Nosema ceranae)专性侵染成年蜜蜂中肠上皮细胞而导致的微孢子虫病给养蜂业造成严重损失。【目的】检测东方蜜蜂微孢子虫nce-miR-23928及其靶基因在侵染意大利蜜蜂(Apis mellifera ligustica)工蜂过程的表达谱,为深入探究nce-miR-23928在东方蜜蜂微孢子虫侵染中的功能及调控机制提供依据。【方法】通过RNAhybrid、miRanda和TargetScan软件预测nce-miR-23928的靶基因。使用BLAST工具将上述靶基因比对到基因本体论(geneontology,GO)、京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)、Nr和Swiss-Prot数据库以获得相应注释。采用实时荧光定量PCR(realtimequantitativePCR,RT-qPCR)技术检测nce-miR-23928及其靶基因在东方蜜蜂微孢子虫侵染意蜂工蜂过程中的相对表达量。【结果】相较于接种后1 d (1 day post infection, 1 dpi),nce-...  相似文献   

17.
In bilaterians, the main regulator of muscle contraction is the troponin (Tpn) complex, comprising three closely interacting subunits (C, T, and I). To understand how evolutionary forces drive molecular change in protein complexes, we have compared the gene structures and expression patterns of Tpn genes in insects. In this class, while TpnC is encoded by multiple genes, TpnT and TpnI are encoded by single genes. Their isoform expression pattern is highly conserved within the Drosophilidae, and single orthologous genes were identified in the sequenced genomes of Drosophila pseudoobscura, Anopheles gambiae, and Apis mellifera. Apis expression patterns also support the equivalence of their exon organization throughout holometabolous insects. All TpnT genes include a previously unidentified indirect flight muscle (IFM)-specific exon (10A) that has evolved an expression pattern similar to that of exon 9 in TpnI. Thus, expression patterns, sequence evolution trends, and structural data indicate that Tpn genes and their isoforms have coevolved, building species- and muscle-specific troponin complexes. Furthermore, a clear case can be made for independent evolution of the IFM-specific isoforms containing alanine/proline-rich sequences. Dipteran genomes contain one tropomyosin gene that encodes one or two high-molecular weight isoforms (TmH) incorporating APPAEGA-rich sequences, specifically expressed in IFM. Corresponding exons do not exist in the Apis tropomyosin gene, but equivalent sequences occur in a high-molecular weight Apis IFM-specific TpnI isoform (TnH). Overall, our approach to comparatively analyze supramolecular complexes reveals coevolutionary trends not only in gene families but in isoforms generated by alternative splicing.  相似文献   

18.
The ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae share life history traits and both infect honeybee colonies, Apis mellifera. Since V. destructor is a biological vector of several honeybee viruses, we here test whether T. mercedesae can also be infected and enable virus replication. In Kunming (China), workers and T. mercedesae mites were sampled from three A. mellifera colonies, where workers were exhibiting clinical symptoms of deformed wing virus (DWV). We analysed a pooled bee sample (15 workers) and 29 mites for the presence of Deformed wing virus (DWV), Black queen cell virus (BQCV), Sacbrood virus (SBV), Kashmir bee virus (KBV), Acute bee paralysis virus (ABPV), and Chronic bee paralysis virus (CBPV). Virus positive samples were analysed with a qPCR. Only DWV +RNA was found but with a high titre of up to 108 equivalent virus copies per mite and 106 per bee. Moreover, in all DWV positive mites (N= 12) and in the bee sample virus–RNA was also detected using RT-PCR and tagged RT-PCR, strongly suggesting virus replication. Our data show for the first time that T. mercedesae may be a biological vector of DWV, which would open a novel route of virus spread in A. mellifera. Received 6 June 2008; revised 14 August 2008; accepted 10 September 2008.  相似文献   

19.
The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) plays a key role in regulating and modulating various physiological and behavioral processes in both protostomes and deuterostomes. The specific functions of serotonin are mediated by its binding to and subsequent activation of membrane receptors. The vast majority of these receptors belong to the superfamily of G-protein-coupled receptors. We report here the in vivo expression pattern of a recently characterized 5-HT1 receptor of the honeybee Apis mellifera (Am5-HT1A) in the mushroom bodies. In addition, we summarize current knowledge on the distribution of serotonin and serotonin receptor subtypes in the brain and specifically in the mushroom bodies of the fruit fly Drosophila melanogaster and the honeybee. Functional studies in these two species have shown that serotonergic signaling participates in various behaviors including aggression, sleep, circadian rhythms, responses to visual stimuli, and associative learning. The molecular, pharmacological, and functional properties of identified 5-HT receptor subtypes from A. mellifera and D. melanogaster will also be summarized in this review.  相似文献   

20.
The evolution of arthropod segmentation has been studied by comparing expression patterns of pair-rule and segment polarity genes in various species. In Drosophila, the formation and maintenance of the parasegmental boundaries depend on the interactions between the wingless (wg), engrailed (en) and hedgehog (hh) genes. Until now, the expression pattern of hh has not been analysed to such a great extent as en or wg. We report the cloning and expression analysis of hh genes from Euscorpius flavicaudis, a chelicerate, and Artemia franciscana, a branchiopod crustacean. Our data provide evidence that hh, being expressed in the posterior part of every segment, is a segment polarity gene in both organisms. Additional hh expression sites were observed in the rostrum and appendages of Euscorpius and in the gut of Artemia. From the available data on hh expression in various bilaterians, we review the various hypotheses on the evolution of hh function and we suggest an ancestral role of hh in proctodeum specification and gut formation.Edited by D. Tautz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号