首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first indication that the insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/M6PR) is developmentally regulated came from studies of the serum form of the receptor in the rat. By immunoblotting, the circulating form of the receptor, which was 10 kDa smaller than the tissue receptor, was high in 19 day fetal and 3, 10, and 20 day postnatal sera and then declined sharply. We next used quantitative immunoblotting to measure the total tissue IGF-II/M6PR in the rat. The receptor levels were high in fetal tissues and in most tissues declined dramatically in late gestation and/or in the early postnatal period. The rank order of receptor expression was heart > placenta > lung = intestine > muscle = kidney > liver > brain. In heart, the receptor was 1.7% of total protein in the extract. More recently, we have examined the expression of IGF-II/M6PR mRNA using Northern blotting and a solution hybridization/RNase protection assay. The rank order of receptor mRNA concentration among fetal tissues agreed with the rank order of receptor protein. The concentration of receptor mRNA was significantly lower in postnatal tissue than in fetal tissue. Thus IGF-II/M6PR mRNA concentration is an important determinant of receptor protein in most tissues. What is the function of the IGF-II/M6PR in embryonic and fetal tissues? The M6PR in birds and frogs does not bind IGF-II. It is intriguing that the rat IGF-II/M6PR is prominent during the embryonic and fetal periods, times at which the differences between mammals, on the one hand, and frogs and birds, on the other, are most striking. Tissue remodeling is an important feature of embryonic and fetal development. Therefore, the well-established lysosomal enzyme targeting function of the receptor may be of particular importance. Since IGF-II can inhibit the cellular uptake of lysosomal enzymes via the IGF-II/M6PR, IGF-II may modulate this lysosomal enzyme targeting function. In addition, the receptor can provide a degradative pathway for IGF-II by receptor-mediated internalization. Thus the receptor could provide a check on the high levels of IGF-II known to be present in the fetus. Finally, the IGF-II/M6PR could directly signal certain biologic responses to IGF-II. © 1993 Wiley-Liss, Inc.  相似文献   

2.
T Okamoto  T Katada  Y Murayama  M Ui  E Ogata  I Nishimoto 《Cell》1990,62(4):709-717
The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/man6PR) can directly interact with and activate Gi-2, a GTP binding protein (G protein). We found that the segment of residues 2410-2423 in the human IGF-II/man6PR activates Gi-2 in a manner similar to G-coupled receptors. We observed a hierarchy of the segment action when tested on various G proteins, with an order of Gi-2 greater than Gi-1 approximately Gi-3 greater than Go. The segment had no effect on Gs or low molecular weight G proteins. The segment action depended on its primary structure and was potentiated when the segment was connected with a part of the receptor transmembrane region. Finally, the Gi-2-activating function of the human IGF-II/man6PR could be blocked by an antibody against the segment, indicating a critical role for this small region of the receptor.  相似文献   

3.
The cation-independent mannose 6-phosphate receptor (MPRCI) functions in the packaging of both newly made and extracellular lysosomal enzymes into lysosomes. The subcellular location of MPRCI reflects these two functions; receptor is found in the Golgi complex, in endosomes, and on the cell surface. To learn about the intracellular pathway followed by surface receptor and to study the relationship between the receptor pools, we examined the entry of the surface MPRCI into Golgi compartments that contain sialyltransferase. Sialic acid was removed from surface-labeled K562 cultured human erythroleukemia cells by neuraminidase treatment. When the cells were returned to culture at 37 degrees C, surface MPRCI was resialylated by the cells with a half-time of 1-2 h. Resialylation was inhibited by reduced temperature, a treatment that allows surface molecules to reach endosomes but blocks further transport. These results indicate that surface MPRCI is transported to the sialyltransferase compartment in the Golgi complex. After culture at 37 degrees C, a small fraction (10-20%) of the resialylated receptor was found on the cell surface. Because a similar fraction of the total receptor pool is found on the cell surface, it is likely that cell surface MPRCI mixes with the cellular pool after resialylation. These data also support the idea that extracellular and newly made lysosomal enzymes are transported to lysosomes through a common compartment.  相似文献   

4.
In this study we have used the Semliki forest virus expression system to transiently express chimeric proteins that contain transmembrane and cytoplasmic domains of the cation-independent mannose 6-phosphate receptor (CI-MPR) fused to chicken avidin. Immunofluorescence and electron microscopy studies showed that the chimeric protein with the entire cytoplasmic domain of CI-MPR was transported to late endosomes, where it accumulated. We made use of the biotin-binding capacity of lumenal avidin, and found that, in agreement with this distribution, the chimeric protein could be labelled with biotinylated HRP endocytosed for a long, but not a brief, period of time. However, truncation of the C-terminal tail distal to the rapid endocytosis motif (YKYSKV), caused the truncated chimera to be transported to, and accumulated within, early endosomes. This truncated chimera did not reach recycling early endosomes labelled with internalised transferrin, to any significant extent, but was accessible to biotinylated HRP internalised for 5 min (or for longer periods at 19 degrees C). Coinfection of these chimeras showed that they follow the same route from the TGN to the early endosomes. We conclude that the sequence distal to the endocytosis motif contains the signals which are required for efficient transport to late endosomes. Our results also suggest that the YKYSKV sequence close to the CI-MPR transmembrane segment is sufficient for targeting to sorting early endosomes.  相似文献   

5.
The mammalian insulin-like growth factor (IGF)-II/cation-independent mannose 6-phosphate receptor (IGF2R) binds IGF-II with high affinity. By targeting IGF-II to lysosomal degradation, it plays a role in the maintenance of correct IGF-II levels in the circulation and in target tissues. Loss of IGF2R function is associated with tumor progression; therefore, the IGF2R is often referred to as a tumor suppressor. The interaction between IGF2R and IGF-II involves domains 11 and 13 of the 15 extracellular domains of the receptor. Recently, a hydrophobic binding region was identified on domain 11 of the IGF2R. In contrast, relatively little is known about the residues of IGF-II that are involved in IGF2R binding and the determinants of IGF2R specificity for IGF-II over the structurally related IGF-I. Using a series of novel IGF-II analogues and surface plasmon resonance assays, this study revealed a novel binding surface on IGF-II critical for IGF2R binding. The hydrophobic residues Phe(19) and Leu(53) are critical for IGF2R binding, as are residues Thr(16) and Asp(52). Furthermore, Thr(16) was identified as playing a major role in determining why IGF-II, but not IGF-I, binds with high affinity to the IGF2R.  相似文献   

6.
The insulin-like growth factor-II/mannose 6-phosphate receptor which targets acid hydrolases to lysosomes, has two different binding sites, one for the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal enzymes and the other for insulin-like growth factor-II (IGF-II). We have asked whether IGF-II can regulate the cellular uptake of the lysosomal enzyme 125I-beta-galactosidase by modulating the binding of 125I-beta-galactosidase to the IGF-II/Man-6-P receptor. We first isolated high affinity 125I-beta-galactosidase by affinity chromatography on an IGF-II/Man-6-P receptor-Sepharose column. Specific uptake (mannose 6-phosphate-inhibitable) of 125I-beta-galactosidase in BRL 3A2 rat liver cells and in rat C6 glial cells was 3.7-4.8 and 4.0-8.0% of added tracer, respectively. The cell-associated 125I-beta-galactosidase in the uptake experiments largely represented internalized radioligand as measured by acid or mannose 6-phosphate washing. The uptake of 125I-beta-galactosidase was inhibited by an antiserum (No. 3637) specific for the IGF-II/Man-6-P receptor. Low concentrations of IGF-II also inhibited the uptake of 125I-beta-galactosidase. Maximal concentrations of IGF-II inhibited uptake by 73 +/- 8% (mean +/- S.D.) in C6 cells and by 77 +/- 6% in BRL 3A2 cells compared to the level of inhibition by mannose 6-phosphate. The relative potency of IGF-II, IGF-I, and insulin (IGF-II much greater than IGF-I; insulin, inactive) were characteristic of the relative affinities of the ligands for the IGF-II/Man-6-P receptor. IGF-II also partially inhibited the binding of 125I-beta-galactosidase to C6 and BRL 3A2 cells at 4 degrees C and inhibited the binding to highly purified IGF-II/Man-6-P receptor by 58 +/- 14%. We conclude that IGF-II inhibits the cellular uptake of 125I-beta-galactosidase and that this inhibition is partly explained by the ability of IGF-II to inhibit binding of 125I-beta-galactosidase to the IGF-II/Man-6-P receptor.  相似文献   

7.
Mannose 6-phosphate receptors (MPRs) deliver newly synthesized lysosomal enzymes to endosomes and then recycle to the Golgi. MPR recycling requires Rab9 GTPase; Rab9 recruits the cytosolic adaptor TIP47 and enhances its ability to bind to MPR cytoplasmic domains during transport vesicle formation. Rab9-bearing vesicles then fuse with the trans-Golgi network (TGN) in living cells, but nothing is known about how these vesicles identify and dock with their target. We show here that GCC185, a member of the Golgin family of putative tethering proteins, is a Rab9 effector that is required for MPR recycling from endosomes to the TGN in living cells, and in vitro. GCC185 does not rely on Rab9 for its TGN localization; depletion of GCC185 slightly alters the Golgi ribbon but does not interfere with Golgi function. Loss of GCC185 triggers enhanced degradation of mannose 6-phosphate receptors and enhanced secretion of hexosaminidase. These data assign a specific pathway to an interesting, TGN-localized protein and suggest that GCC185 may participate in the docking of late endosome-derived, Rab9-bearing transport vesicles at the TGN.  相似文献   

8.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

9.
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors.  相似文献   

10.
Mouse L cells deficient in expression of the murine cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor (CI-MPR/IGF-IIR) were stably transfected with a plasmid containing the cDNA for the human receptor. Transfected cells expressed high levels of the human receptor which functioned in the transport of lysosomal enzymes and was capable of binding 125I-IGF-II, both at the cell surface and intracellularly. Cell surface binding of 125I-IGF-II by the receptor could be inhibited by pretreatment of cells with antibodies to the receptor or by coincubation with the lysosomal enzyme, beta-glucuronidase. Expression of the receptor conferred on transfected cells the ability to internalize and degrade 125I-IGF-II. Cells transfected with the parental vector and those expressing the human CI-MRP/IGF-IIR were found to express an atypical binding site for IGF-II that was distinct from the CI-MPR/IGF-IIR and the type I IGF-receptor. The availability of two cell lines, one of which overexpresses the human CI-MPR/IGF-IIR and one deficient in expression of the murine receptor, may help in the analysis of the role of the receptor in mediating the biological effects of IGF-II. They should also be useful in examining the significance of binding of ligands, such as transforming growth factor-beta 1 precursor and proliferin to this receptor.  相似文献   

11.
We have isolated cDNA clones encoding the entire sequence of the bovine 46 kd cation-dependent mannose 6-phosphate (CD Man-6-P) receptor. Translation of CD Man-6-P receptor mRNA in Xenopus laevis oocytes results in a protein that binds specifically to phosphomannan-Sepharose, thus demonstrating that our cDNA clones encode a functional receptor. The deduced 279 amino acid sequence reveals a single polypeptide chain that contains a putative signal sequence and a transmembrane domain. Trypsin digestion of microsomal membranes containing the receptor and the location of the five potential N-linked glycosylation sites indicate that the receptor is a transmembrane protein with an extracytoplasmic amino terminus. This extracytoplasmic domain is homologous to the approximately 145 amino acid long repeating domains present in the 215 kd cation-independent Man-6-P receptor.  相似文献   

12.
The interaction of the bovine cation-independent mannose 6-phosphate receptor with a variety of phosphorylated ligands has been studied using equilibrium dialysis and immobilized receptor to measure ligand binding. The dissociation constants for mannose 6-phosphate, pentamannose phosphate, bovine testes beta-galactosidase, and a high mannose oligosaccharide with two phosphomonoesters were 7 X 10(-6) M, 6 X 10(-6) M, 2 X 10(-8) M, and 2 X 10(-9) M, and the mol of ligand bound/mol of receptor monomer were 2.17, 1.85, 0.9, and 1.0, respectively. We conclude that the cation-independent mannose 6-phosphate receptor has two mannose 6-phosphate-binding sites/polypeptide chain.  相似文献   

13.
We have used Chinese hamster ovary (CHO) cells and a murine lymphoma cell line to study the recycling of the 215-kD and the 46-kD mannose 6-phosphate receptors to various regions of the Golgi to determine the site where the receptors first encounter newly synthesized lysosomal enzymes. For assessing return to the trans-most Golgi compartments containing sialyltransferase (trans-cisternae and trans-Golgi network), the oligosaccharides of receptor molecules on the cell surface were labeled with [3H]galactose at 4 degrees C. Upon warming to 37 degrees C, the [3H]galactose residues on both receptors were substituted with sialic acid with a t1/2 approximately 3 hrs. Other glycoproteins acquired sialic acid at least 8-10 times slower. Return of the receptors to the trans-Golgi cisternae containing galactosyltransferase could not be detected. Return to the cis/middle Golgi cisternae containing alpha-mannosidase I was measured by adding deoxymannojirimycin, a mannosidase I inhibitor, during the initial posttranslational passage of [3H]mannose-labeled glycoproteins through the Golgi, thereby preserving oligosaccharides which would be substrates for alpha-mannosidase I. After removal of the inhibitor, return to the early Golgi with subsequent passage through the Golgi complex was measured by determining the conversion of the oligosaccharides from high mannose to complex-type units. This conversion was very slow for the receptors and other glycoproteins (t1/2 approximately 20 h). Exposure of the receptors and other glycoproteins to the dMM-sensitive alpha-mannosidase without movement through the Golgi apparatus was determined by measuring the loss of mannose residues from these proteins. This loss was also slow. These results indicate that both Man-6-P receptors routinely return to the Golgi compartment which contains sialyltransferase and recycle through other regions of the Golgi region less frequently. We infer that the trans-Golgi network is the major site for lysosomal enzyme sorting in CHO and murine lymphoma cells.  相似文献   

14.
Although the distribution of the cation-independent mannose 6-phosphate receptor (CI-MPR) has been well studied, its intracellular itinerary and trafficking kinetics remain uncertain. In this report, we describe the endocytic trafficking and steady-state localization of a chimeric form of the CI-MPR containing the ecto-domain of the bovine CI-MPR and the murine transmembrane and cytoplasmic domains expressed in a CHO cell line. Detailed confocal microscopy analysis revealed that internalized chimeric CI-MPR overlaps almost completely with the endogenous CI-MPR but only partially with individual markers for the trans-Golgi network or other endosomal compartments. After endocytosis, the chimeric receptor first enters sorting endosomes, and it then accumulates in the endocytic recycling compartment. A large fraction of the receptors return to the plasma membrane, but some are delivered to the trans-Golgi network and/or late endosomes. Over the course of an hour, the endocytosed receptors achieve their steady-state distribution. Importantly, the receptor does not start to colocalize with late endosomal markers until after it has passed through the endocytic recycling compartment. In CHO cells, only a small fraction of the receptor is ever detected in endosomes bearing substrates destined for lysosomes (kinetically defined late endosomes). These data demonstrate that CI-MPR takes a complex route that involves multiple sorting steps in both early and late endosomes.  相似文献   

15.
The structural requirements for oligomerization and the generation of a functional mannose 6-phosphate (Man-6-P) binding site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) were analyzed. Chemical cross-linking studies on affinity-purified CD-MPR and on solubilized membranes containing the receptor indicate that the CD-MPR exists as a homodimer. To determine whether dimer formation is necessary for the generation of a Man-6-P binding site, a cDNA coding for a truncated receptor consisting of only the signal sequence and the extracytoplasmic domain was constructed and expressed in Xenopus laevis oocytes. The expressed protein was completely soluble, monomeric in structure, and capable of binding phosphomannosyl residues. Like the dimeric native receptor, the truncated receptor can release its ligand at low pH. Ligand blot analysis using bovine testes beta-galactosidase showed that the monomeric form of the CD-MPR from bovine liver and testes is capable of binding Man-6-P. These results indicate that the extracytoplasmic domain of the receptor contains all the information necessary for ligand binding as well as for acid-dependent ligand dissociation and that oligomerization is not required for the formation of a functional Man-6-P binding site. Several different mutant CD-MPRs were generated and expressed in X. laevis oocytes to determine what region of the receptor is involved in oligomerization. Chemical cross-linking analyses of these mutant proteins indicate that the transmembrane domain is important for establishing the quaternary structure of the CD-MPR.  相似文献   

16.
The interaction of soluble forms of the human cation-independent insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-IIR) with IGFs and mannosylated ligands was analyzed in real time. IGF-IIR proteins containing domains 1-15, 10-13, 11-13, or 11-12 were combined with rat CD4 domains 3 and 4. Following transient expression in 293T cells, secreted protein was immobilized onto biosensor chips. beta-Glucuronidase and latent transforming growth factor-beta1 bound only to domains 1-15. IGF-II bound to all constructs except a control, which contained a point mutation in domain 11. The affinity of domains 1-15, 10-13, 11-13, and 11-12 to IGF-II were 14, 120, 100, and 450 nm, respectively. Our data suggest that domain 13 acts as an enhancer of IGF-II affinity by slowing the rate of dissociation, but additional enhancement by domains other than 10-13 also occurs. As the receptor functions to transport ligands from either the trans-Golgi network or extracellular space to the endosomes, the interaction of IGF-IIR extracellular domains with IGF-II was analyzed over a pH range of 5.0-7.4. The constructs behaved differently in response to pH and in recovery after low pH exposure, suggesting that pH stability of the extracellular domains depends on domains other than 10-13.  相似文献   

17.
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) interacts with lysosomal enzymes through two binding domains in its extracytoplasmic domain. We report in the accompanying article (Byrd, J. C., and MacDonald, R. G. (2000) J. Biol. Chem. 275, 18638-18646) that only one of the two extracytoplasmic mannose 6-phosphate (Man-6-P) binding domains is necessary for high affinity Man-6-P ligand binding, suggesting that, like the cation-dependent Man-6-P receptor, oligomerization of the IGF2R contributes to high affinity interaction with lysosomal enzymes. In the present study, we have directly characterized both naturally occurring and engineered forms of the IGF2R for their ability to form oligomeric structures. Whereas gel filtration chromatography suggested that purified bovine IGF2R species exist in a monomeric form, native gel electrophoresis allowed for the separation of dimeric and monomeric forms of the receptors with distinct phosphomannosyl ligand binding characteristics. The ability of the IGF2R to form oligomeric complexes was confirmed and localized to the extracytoplasmic domain through the use of epitope-tagged soluble IGF2R constructs bearing deletions of the transmembrane and cytoplasmic domains. Finally, chimeric receptors were engineered containing the extracytoplasmic and transmembrane domains of the IGF2R fused to the cytoplasmic domain of the epidermal growth factor receptor with which dimerization of the chimeras could be monitored by measuring autophosphorylation. Collectively, these results show that the IGF2R is capable of forming oligomeric complexes, most likely dimers, in the absence of Man-6-P ligands.  相似文献   

18.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

19.
The mannose 6-phosphate receptor and the biogenesis of lysosomes   总被引:122,自引:0,他引:122  
Localization of the 215 kd mannose 6-phosphate receptor (MPR) was studied in normal rat kidney cells. Low levels of receptor were detected in the trans Golgi network, Golgi stack, plasma membrane, and peripheral endosomes. The bulk of the receptor was localized to an acidic, reticular-vesicular structure adjacent to the Golgi complex. The structure also labeled with antibodies to lysosomal enzymes and a lysosomal membrane glycoprotein (lgp120). While lysosome-like, this structure is not a typical lysosome that is devoid of MPRs. The endocytic marker alpha 2 macroglobulin-gold entered the structure at 37 degrees C, but not at 20 degrees C. With prolonged chase, most of the marker was transported from the structure into lysosomes. We propose that the MPR/lgp-enriched structure is a specialized endosome (prelysosome) that serves as an intermediate compartment into which endocytic vesicles discharge their contents, and where lysosomal enzymes are released from the MPR and packaged along with newly synthesized lysosomal glycoproteins into lysosomes.  相似文献   

20.
The mannose 6-phosphate/insulin-like growth factor-II (Man-6-P/IGF-II) receptor is known to cycle between the Golgi, endosomes, and the plasma membrane. In the Golgi the receptor binds newly synthesized lysosomal enzymes and transports them directly to an endosomal (prelysosomal) compartment without traversing the plasma membrane. Deletion of the carboxyl-terminal Leu-Leu-His-Val residues of the 163 amino acid cytoplasmic tail of the bovine Man-6-P/IGF-II receptor partially impaired this function, resulting in the diversion of a portion of the receptor-ligand complexes to the cell surface, where they were endocytosed. The same phenotype was observed when 134 residues of the cytoplasmic tail were deleted from the carboxyl terminus. Disruption of the Tyr24-Lys-Tyr-Ser-Lys-Val29 plasma membrane internalization signal alone had little effect on Golgi sorting, but when combined with either deletion resulted in a complete loss of this function. The mutant receptors retained the ability to recycle to the Golgi and bind cathepsin D. These results indicate that the cytoplasmic tail of the Man-6-P/IGF-II receptor contains two signals that contribute to Golgi sorting, presumably by interacting with the Golgi clathrin-coated pit adaptor proteins. The Leu-Leu-containing sequence represents a novel motif for mediating interaction with Golgi adaptor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号