首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A proteinase produced by the human gastrointestinal isolate Lactobacillus rhamnosus strain OXY was identified and characterized. The prtR2 gene coding for proteinase activity was detected in the examined strain. The PCR primers used were constructed on the basis of the sequence of the prtR2 proteinase gene from Lactobacillus rhamnosus GG. The enzyme was purified by fast protein liquid chromatography (FPLC) using CM-Sepharose Fast Flow and Sephacryl S-300 columns. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the enzyme had a relatively low molecular mass of 60 kD. Protease activity was observed at a pH range from 6.5 to 7.5 with optimum k (cat)/K (m) values at pH 7.0 and 40°C. Maximum proteolytic activity (59?U mL(-1)) was achieved after 48?hr of cultivation. The activity of the enzyme was inhibited only by irreversible inhibitors specific for serine proteinases (PMSF and 3,4-dichloro-isocumarine), suggesting that the enzyme was a serine proteinase. Proteinase activity was increased by Ca(2+) and Mg(2+), and inhibited by Cu(2+), Zn(2+), Cd(2+), and Fe(2+.).  相似文献   

2.
Eggs of the silkworm, Bombyx mori, contain a high level of a proteinase which is most active in acidic pH region. The proteinase was purified from an extract of eggs by a six-step procedure which included conventional chromatographic fractionations. The molecular mass of the proteinase was estimated to be 350 kDa by gel filtration and 47 kDa by electrophoresis on sodium dodecyl sulfate/polyacrylamide gels, suggesting an octameric structure. The amino acid composition was found to resemble that of mammalian lysosomal cysteine proteinases, in particular cathepsin L. The NH2-terminal 10-residue sequence is Val-Gln-Phe-Phe-Asp-Leu-Val-Lys-Glu-Glu-. The enzyme appears to be a member of the class of cysteine proteinases since it was strongly inhibited by sulfhydryl-reactive compounds and N-[N-(1,3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]-agmatine (E-64). The enzyme hydrolyzed various protein substrates, such as hemoglobin, vitellogenin, vitellin, and lipophorin, with maximal activity around pH 3-3.5. The specificity of the cleavage sites in the oxidized B chain of insulin was rather well defined and there was high affinity for hydrophobic residues at the P2 and P3 positions. The cysteine proteinase is thought to be involved in protein degradation during embryonic development of silkworm eggs.  相似文献   

3.
Proteinase activities in the larval midguts of the bruchids Callosobruchus maculatus and Zabrotes subfasciatus were investigated. Both midgut homogenates showed a slightly acidic to neutral pH optima for the hydrolysis of fluorogenic substrates. Proteolysis of epsilon-aminocaproil-Leu-Cys(SBzl)-MCA was totally inhibited by the cysteine proteinase inhibitors E-64 and leupeptin, and was activated by 1.5 mM DTT in both insects, while hydrolysis of the substrate Z-ArgArg-MCA was inhibited by aprotinin and E-64, which suggests that it is being hydrolysed by serine and cysteine proteinases. Gel assays showed that the proteolytic activity in larval midgut of C. maculatus was due to five major cysteine proteinases. However, based on the pattern of E-64 and aprotinin inhibition, proteolytic activity in larval midgut of Z. subfasciatus was not due only to cysteine proteinases. Fractionation of the larval midgut homogenates of both bruchids through ion-exchange chromatography (DEAE-Sepharose) revealed two peaks of activity against Z-ArgArg-MCA for both bruchid species. The fractions from C. maculatus have characteristics of cysteine proteinases, while Z. subfasciatus has one non-retained peak of activity containing cysteine proteinases and another eluted in a gradient of 250-350 mM NaCl. The proteolytic activity of the retained peak is higher at pH 8.8 than at pH 6.0 and corresponds with a single peak that is active against N-p-tosyl-GlyGlyArg-MCA, and sensitive to 250 microM aprotinin (90% inhibition). The peak contains a serine proteinase which hydrolyzes alpha-amylase inhibitor 1 from the common bean (Phaseolus vulgaris). Arch.  相似文献   

4.
Since Fasciola sp. contained proteolytic enzyme(s), it was confirmed that degradation took place in protein components in extracts of the liver flukes, which resulted in lack of clarity of sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Degradation was shown to occur mostly during a heating process of the extract samples. The proteolytic activity in the extracts was completely blocked and electrophoretic patterns were improved only by the use of cysteine proteinase inhibitor N-[N-(L-3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]-agmatine (E-64). Great improvement was also noted in electrophoretic patterns of the extracts of other trematodes, such as Paragonimus westermani, P. miyazakii and Clonorchis sinesis, when their extracts were treated with E-64.  相似文献   

5.
6.
Intraperitoneal administration of N-(L-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-prolin e (CA-074) to rats at a dose of 4 mg/100 g greatly inhibited cathepsin-B activity in both liver and kidney for at least 4 h. Its inhibitory effect was selective for cathepsin-B activity in the liver but not in the kidney. The effects of selective inhibition of cathepsin-B activity by CA-074 treatment, and general inhibition of cysteine proteinases by N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl-3-methylbutylamid e (E-64-c) on the degradation of fluorescein isothiocyanate (FITC)-labeled asialofetuin in liver lysosomes, were examined in vivo. Undegraded or partially degraded FITC-labeled asialofetuin and its FITC-labeled degradation products were both found in the lysosomes and were easily separated by Sephadex G-25' column chromatography. The FITC-labeled degradation products were mainly lysine with an FITC-labeled epsilon-amino group. Accumulation of undegraded or partially degraded FITC-labeled asialofetuin in the lysosomes was marked after E-64-c treatment, but slight after CA-074 treatment. Under the marked inhibition of general lysosomal cysteine-proteinase activity by E-64-c or marked selective inhibition of cathepsin-B activity by CA-074 in vitro, degradation of FITC-labeled asialofetuin by disrupted lysosomes was analyzed on the basis of measurement of FITC-labeled degradation products by Sephadex G-25 column chromatography. It was suppressed markedly but incompletely by E-64-c as well as by CA-074, but more weakly than by E-64-c. These results shows that E-64-sensitive cysteine proteinases are important in lysosomal protein degradation, but cathepsin B has only a role in part and that an E-64-resistant proteinase(s) may also be important.  相似文献   

7.
A proteinase produced by the human gastrointestinal isolate Lactobacillus rhamnosus strain OXY was identified and characterized. The prtR2 gene coding for proteinase activity was detected in the examined strain. The PCR primers used were constructed on the basis of the sequence of the prtR2 proteinase gene from Lactobacillus rhamnosus GG. The enzyme was purified by fast protein liquid chromatography (FPLC) using CM-Sepharose Fast Flow and Sephacryl S-300 columns. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the enzyme had a relatively low molecular mass of 60 kD. Protease activity was observed at a pH range from 6.5 to 7.5 with optimum k cat/K m values at pH 7.0 and 40°C. Maximum proteolytic activity (59 U mL?1) was achieved after 48 hr of cultivation. The activity of the enzyme was inhibited only by irreversible inhibitors specific for serine proteinases (PMSF and 3,4-dichloro-isocumarine), suggesting that the enzyme was a serine proteinase. Proteinase activity was increased by Ca2+ and Mg2+, and inhibited by Cu2+, Zn2+, Cd2+, and Fe2+.  相似文献   

8.
The involvement of intrinsic proteinases in the excystment of Paragonimus ohirai metacercariae was studied in in vitro excystment induced by sodium (Na) cholate, a bile salt and A23187, a Ca2+ ionophore. The effects of various proteinase inhibitors on the in vitro excystment were examined and similar inhibitory profiles were obtained. Benzyloxycarbonyl-L-leucyl-L-leucinal (Z-Leu-Leu-H), a cysteine proteinase inhibitor and 4-(2-aminoethyl)-benzenesulfonyl fluoride (Pefabloc SC), a serine proteinase inhibitor completely inhibited excystment, while L-3-carboxy-2,3-trans-epoxypropionyl-leucylamido (4-guanidino)-butane (E-64), a cysteine proteinase inhibitor and leupeptin, a cysteine/serine proteinase inhibitor permitted partial excystment at a lower rate, but inhibited it from proceeding from the partial excystment stage. In secretions released from metacercariae during excystment, proteinase activities detected towards various fluorogenic peptidyl substrates were almost completely inhibited by Z-Leu-Leu-H and E-64, but not by Pefabloc SC. Sodium cholate induced a higher secretion of cysteine proteinases and a higher rate of excystment than A23187. Profiles of cysteine proteinase activities towards five peptidyl substrates detected were markedly different among the two secretions and the lysate of newly excysted juveniles. Newly excysted juveniles released cysteine proteinases with similar activity profiles and levels to metacercariae induced by Na cholate-incubation, whereas the release of cysteine proteinases was reduced compared with metacercariae induced by A23187-incubation. These results provide valuable information about the involvement of intrinsic proteinases in metacercarial excystment.  相似文献   

9.
Compartmentalization of proteinases, amylases, and pH in the midgut of Nauphoeta cinerea Oliv. (Blattoptera:Blaberidae) was studied in order to understand the organization of protein and starch digestion. Total proteolytic activity measured with azocasein was maximal at pH 11.5 both in anterior (AM) and posterior (PM) halves of the midgut, but the bulk of activity (67%) was found in PM. Total AM and PM preparations were fractionated on a Sephadex G-50 column and further analysed by means of activity electrophoresis and specific inhibitors and activators. The major activity in PM was classified as an unusual SH-dependent proteinase with M(r) 24,000 and pH optimum with synthetic substrate BApNA at 10.0. The enzyme was 43-fold activated in the presence of 1 mM DTT, insensitive to synthetic inhibitors of serine (PMSF, TLCK, TPCK) and cysteine (IAA, E-64) proteinases, strongly inhibited by STI, and displayed four active bands on zymograms. In PM, activities of trypsin-like, chymotrypsin-like, subtilisin-like, and cysteine proteinases were observed. Aspartic and metalloproteinases were not detected. In AM, activity of unusual SH-dependent proteinase also dominated and activity of chymotrypsin-like proteinase was observed, but their levels were much lower than in PM. Distribution of amylase activity, exhibiting an optimum at pH 6.0, was quite the opposite. The major part of it (67%) was located in AM. Treatment of amylase preparation with proteinases from AM and PM reduced amylase activity twofold. pH of the midgut contents was 6.0-7.2 in AM, 6.4-7.6 in the first and 8.8-9.3 in the second halves of PM. Thus, pH in AM is in good agreement with the optimal pH of amylase, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low. Active proteolysis takes place in the second half of PM, where pH of the gut is close to the optimal pH of proteinases.  相似文献   

10.
Non-albicans Candida species cause 35-65% of all candidemias in the general population, especially in immunosuppressed individuals. Here, we describe a case of a 19-year-old HIV-infected man with pneumonia due to a yeast-like organism. This clinical yeast isolate was identified as Candida guilliermondii through mycological tests. C. guilliermondii was cultivated in brain heart infusion medium for 48 h at 37 degrees C. After sequential centrifugation and concentration steps, the free-cell culture supernatant was obtained and extracellular proteolytic activity was assayed firstly using gelatin-SDS-PAGE. A 50 kDa proteolytic enzyme was detected with activity at physiological pH. This activity was completely blocked by 10 mM phenylmethylsulphonyl fluoride (PMSF), a serine proteinase inhibitor, suggesting that this extracellular proteinase belongs to the serine proteinase class. E-64, a strong cysteine proteinase inhibitor, and pepstatin A, a specific aspartic proteolytic inhibitor, did not interfere with the 50 kDa proteinase. Conversely, a zinc-metalloproteinase inhibitor (1,10-phenanthroline) restrained the proteinase activity released by C. guilliermondii by approximately 50%. Proteinases are a well-known class of enzymes that participate in a vast context of yeast-host interactions. In an effort to establish a functional implication for this extracellular serine-type enzyme, we investigated its capacity to hydrolyze some serum proteins and extracellular matrix components. We demonstrated that the 50 kDa exocellular serine proteinase cleaved human serum albumin, non-immune human immunoglobulin G, human fibronectin and human placental laminin, generating low molecular mass polypeptides. Collectively, these results showed for the first time the ability of an extracellular proteolytic enzyme other than aspartic-type proteinases in destroying a broad spectrum of relevant host proteins by a clinical species of non-albicans Candida.  相似文献   

11.
It has been suggested that the lysosomal proteinases cathepsin B, L and D participate in tumour invasion and metastasis. Whereas for cathepsins B and L the role of active enzyme in invasion processes has been confirmed, cathepsin D was suggested to support tumour progression via its pro-peptide, rather than by its proteolytic activity. In this study we have compared the presence of active cathepsins B, L and D in ras-transformed human breast epithelial cells (MCF-10A neoT) with their ability to invade matrigel. In this cell line high expression of all three cathepsins was detected by immunofluorescence microscopy. The effect of proteolytic activity on cell invasion was studied by adding various natural and synthetic cysteine and aspartic proteinase inhibitors. The most effective compound was chicken cystatin, a general natural inhibitor of cysteine proteinases, (82.8+/-1.6% inhibition of cell invasion), followed by the synthetic inhibitor trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64). CLIK-148, a specific inhibitor of cathepsin L, showed a lower effect than chicken cystatin and E-64. Pepstatin A weakly inhibited invasion, whereas the same molar concentrations of squash aspartic proteinase (SQAPI)-like inhibitor, isolated from squash Cucurbita pepo, showed significant inhibition (65.7+/-1.8%). We conclude that both cysteine and aspartic proteinase activities are needed for invasion by MCF-10A neoT cells in vitro.  相似文献   

12.
Summary

Previous studies have shown that spatiotemporal regulation of extracellular matrix (ECM) by proteinases is implicated in the initial step of regeneration. In amphibian regeneration, the up-regulation of proteinases such as metalloproteinases (MMPs) and cathepsin D, and proteinase-related proteins such as proteinase tissue inhibitors and activators has been demonstrated. Since the earthworm could provide a unique and valuable model to investigate the mechanism of regeneration, we studied the developmental change in proteinase expression during earthworm tail regeneration. Zymographic analysis revealed that proteinase activities began to increase within 1 h after amputation and reached a maximum at 7 days post-amputation. This peak in activity was approximately 22-fold greater than the unamputated controls. Thereafter, the proteinase activities tended to decrease followed by another peak at 30 days before returning to control levels. At least four types of proteinase were distinguishable at 7 and 30 days post-amputation, with molecular weights of 25, 28, 38, and 44 kDa, respectively. All proteinase activities were strongly inhibited by addition of phenylmethylsulfonyl fluoride (PMSF) and aprotinin, specific inhibitors for serine proteinase. Pepstatin A, E-64, iodoacetamide and a metal ion-free medium were not effective inhibitors, indicating that proteinases expressed during earthworm tail regeneration would be serine proteinases. In addition, we were able to detect two types of plasminogen activator (PA) with molecular weights of 40 and 47 kDa, respectively. PA activities were predominantly expressed at 1, 5, and 25 days post-amputation, which preceded two peaks of serine proteinase activities appearing at approximately 7 and 30 days after amputation, respectively. This fact supports the view that serine proteinases expressed in respond to tail amputation may be plasmin-like proteinases activated by PA.  相似文献   

13.
Abstract Epimastigotes of the American Trypanosome Trypanosoma rangeli contain a very low cysteine proteinase (CP) activity. The enzyme was purified to homogeneity by affinity chromatography on ConA-Sepharose and Cystatin-Sepharose. This CP had a similar apparent molecular mass and an identical N-terminal sequence (15 amino acids) as compared with cruzipain from Trypanosoma cruzi ; cross-reacted immunologically with the latter enzyme, it was inhibited by E-64 and TLCK, but not by PMSF, o-phenanthroline or Pepstatin, and was able to use the same substrates, although with different order of effectiveness and optimum pH.  相似文献   

14.
R. Krauspe  A. Scheer  S. Schaper  P. Bohley 《Planta》1986,167(4):482-490
Endoproteolytic activities (EC 3.4.22. and 23.) of cell-free extracts of Euglena gracilis, measured by autolysis and azocaseinolysis, vary considerably during the culture growth cycle. They are high in the lag phase, drop sharply up to the mid-logarithmic phase, and then rise again reaching the initial high levels in the stationary phase. This pattern has been observed for both the soluble and the particulate proteolytic activities of four cell types differing with regard to the developmental state of the chloroplast: dark-grown, light-induced, and light-grown wild-type cells, as well as light-grown apoplastic W3BUL mutant cells, all on a glucose-based medium. Therefore, the activity of the main intracellular proteinases is neither directly nor indirectly light-regulated, but seems to be controlled by the availability of nutrients. Endogenous inhibitors of proteinases could not be detected. Cysteine proteinase activity has been found in the soluble and the particulate fractions, but aspartic proteinase activity in the latter ones only. Different cysteine proteinases may be present in the two fractions, during the different growth phases, and in the four cell types studied.Abbreviations CBB Coomassie Brilliant Blue G-250 - DFP diisopropyl fluorophosphate - EDTA disodium ethylendiaminetetraacetic acid - E-64 l-transepoxysuccinyl-leucyl-amido(4-guanidino)butane - Iog phase logarithmic growth phase - MET 2-mercaptoethanol - PMSF phenylmethylsulfonyl fluoride - Z benzyloxycarbonyl Paper I of this series is Krauspe and Scheer (1986). A preliminary publication appeared (Krauspe et al. 1982)  相似文献   

15.
棉铃虫卵内蛋白酶性质研究   总被引:6,自引:0,他引:6  
在棉铃虫Helicoverpa armigera卵母细胞内检测到蛋白酶活性,其作用Ph在酸性范围,酶活性受E-64、Pepstatin和iPr2P-F等多种抑制剂抑制。在Ph4.0时蛋白酶对牛血红蛋白有较高水解率。抗蓖麻蚕Philosamia cynthia ricini卵半胱氨酸蛋白酶血清和抗蓖麻蚕卵天冬氨酸蛋白酶血清可以识别棉铃虫卵内成分。实验结果表明;棉铃虫卵内可能存在半胱氨酸蛋白酶类、丝氨酸蛋白酶类和天冬氨酸蛋白酶类,并且与蓖麻蚕卵内蛋白酶有一定的相似性。  相似文献   

16.
Cysteine proteinases (CPs) are synthesized as zymogens and converted to mature proteinase forms by proteolytic cleavage and release of their pro domain peptides. A cDNA encoding a papain-like CP, called hgcp-Iv, was isolated from a Heterodera glycines J2 cDNA library, expressed and utilized to assess the ability of its propeptide to inhibit proteinase in its active form. The hgcp-Iv cDNA sequence encodes a polypeptide of 374 amino acids with the same domain organization as other cathepsin L-like CPs, including a hydrophobic signal sequence and a pro domain region. HGCP-Iv, produced in Escherichia coli as a fusion protein with thioredoxin, degrades the synthetic peptide benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin and is inhibited by E-64, a substrate and inhibitor commonly used for functional characterization of CPs. Recombinant propeptides of HGCP-Iv, expressed in E. coli, presented high inhibitory activity in vitro towards its cognate enzyme and proteinase activity of Meloidogyne incognita females, suggesting its usefulness in inhibiting nematode CPs in biological systems. Cysteine proteinases from other species produced no noticeable activity.  相似文献   

17.
Cellular extracts of Tetrahymena thermophila were found to contain substantial levels of proteolytic activity. Protein digestion occurred over broad ranges of pH, ionic strength, and temperature and was stimulated by treatment with thiol reductants, EDTA and sodium dodecyl sulfate. Incubation at temperatures ≥60° C or with high concentrations of chaotropic reagents such as 10 M urea or 6 M guanidine-HCl caused an apparent irreversible loss of activity. Activity was also strongly diminished by increasing concentrations of divalent cations. Several peptide aldehydes, p-hydroxymercuribenzoate, and alkylating reagents such as iodoacetate, N-tosyl-L-lysine chloromethyl ketone, N-tosyl-L-phenylalanine chloromethyl ketone, N-methylmaleimide, and trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-butane were potent inhibitors of proteolytic activity. Aprotinin diminished activity by approximately 40% while benzamidine, 3,4-dichloroisocoumarin, and trypsin inhibitors from soy bean, lima bean, and chicken egg caused relatively modest inhibition of proteolytic activity. Phenylmethanesulfonyl fluoride had no apparent effect. Electrophoretic separation of proteins on SDS-polyacrylamide gels copolymerized with gelatin substrate revealed that at least eight active proteolytic enzymes were present in cell extracts ranging in apparent molecular weight from 45,000 to 110,000. Five of these apparent proteases were detected in 70% ammonium sulfate precipitates. Gelatinase activity was not detectable when extracts were pretreated with iodoacetate or E-64, indicating that all of the enzymes observed in activity gels were sensitive to thiol alkylation. Cellular extracts of T. thermophila appeared to contain multiple forms of proteolytic enzymes which were stimulated by thiol reductants and inhibited by thiol modifying reagents. Accordingly, the proteolytic enzymes present in cell extracts appear to be predominantly cysteine proteinases.  相似文献   

18.
Cellular extracts of Tetrahymena thermophila were found to contain substantial levels of proteolytic activity. Protein digestion occurred over broad ranges of pH, ionic strength, and temperature and was stimulated by treatment with thiol reductants, EDTA and sodium dodecyl sulfate. Incubation at temperatures > or = 60 degrees C or with high concentrations of chaotropic reagents such as 10 M urea or 6 M guanidine-HCl caused an apparent irreversible loss of activity. Activity was also strongly diminished by increasing concentrations of divalent cations. Several peptide aldehydes, p-hydroxymercuribenzoate, and alkylating reagents such as iodoacetate, N-tosyl-L-lysine chloromethyl ketone, N-tosyl-L-phenylalanine chloromethyl ketone, N-methylmaleimide, and trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-butane were potent inhibitors of proteolytic activity. Aprotinin diminished activity by approximately 40% while benzamidine, 3,4-dichlorosocoumarin, and trypsin inhibitors from soy bean, lima bean, and chicken egg caused relatively modest inhibition of proteolytic activity. Phenylmethanesulfonyl fluoride had no apparent effect. Electrophoretic separation of proteins on SDS-polyacrylamide gels copolymerized with gelatin substrate revealed that at least eight active proteolytic enzymes were present in cell extracts ranging in apparent molecular weight from 45,000 to 110,000. Five of these apparent proteases were detected in 70% ammonium sulfate precipitates. Gelatinase activity was not detectable when extracts were pretreated with iodoacetate or E-64, indicating that all of the enzymes observed in activity gels were sensitive to thiol alkylation. Cellular extracts of T. thermophila appeared to contain multiple forms of proteolytic enzymes which were stimulated by thiol reductants and inhibited by thiol modifying reagents. Accordingly, the proteolytic enzymes present in cell extracts appear to be predominantly cysteine proteinases.  相似文献   

19.
Chronic exposure (24 h) to parathyroid hormone (PTH) increases the intracellular proteolytic activity in cultured opossum kidney cells 2-fold at physiological PTH concentrations (10(-12) mol/l). This increase can be blocked by E-64, an inhibitor of thiol proteinases. The phorbol ester TPA mimicks the effect of PTH, whereas the calcium ionophore A23187 reduces the intracellular proteinase activity. Forskolin and dibutyrylic cAMP do not elevate proteinase activity. The protein kinase C inhibitor staurosporine is equally effective in blocking the TPA- and PTH-induced proteinase activity increase. These data indicate that PTH increases the intracellular thiol proteinase activity by an activation of protein kinase C and not by the cAMP dependent way.  相似文献   

20.
五种黄精属植物的蛋白水解酶谱研究   总被引:3,自引:0,他引:3  
用蛋白水解酶复性电泳方法 (G- PAGE)分析了 5种黄精属植物根状茎和叶的蛋白水解酶的种类和活性。结果表明 :(1)它们的根状茎均含有 85k D和 55k D的蛋白水解酶 ;叶均含有 82 k D的蛋白水解酶 ;(2 )根状茎和叶的蛋白水解酶种类和活性有很大差异 ,叶的蛋白水解酶活性为根状茎的 10倍 ,它们的活性均受 p H影响 ,其最适 p H为 7;(3)每种植物都含有自己特有蛋白水解酶 ;(4 )蛋白水解酶在植物鉴定中有参考价值  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号