首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of cyclohexanol by Nocardia globerula CL1   总被引:7,自引:5,他引:7       下载免费PDF全文
1. Nocardia globerula CL1, isolated by enrichment on cyclohexanol and grown with it as carbon source, oxidized it with a Q(o2) of 39mul/h per mg dry wt. and the overall consumption of 2.2mumol of oxygen/mol of substrate. Cyclohexanone, 2-hydroxycyclohexan-1-one dimer and cyclohexane-1,2-dione were oxidized with Q(o2) values similar to that for cyclohexanol whereas in-caprolactone and 6-hydroxycaproate were oxidized very slowly and adipate not all. 2. Disrupted cell suspensions could not be shown to catalyse the conversion of cyclohexanol into cyclohexanone. 3. A cyclohexanol-induced cyclohexanone oxygenase (specific activity 0.55mumol of NADPH oxidized/min per mg of protein) catalysed the consumption of 1mol of NADPH and 1mol of O(2) in the presence of 1mol of cyclohexanone. NADPH oxidation did not occur under anaerobic conditions. The only detected reaction product with 25000g supernatant was 6-hydroxycaproate. 4. Extracts of cyclohexanol-grown cells contained a lactone hydrolase (specific activity 15.6mumol hydrolysed/min per mg of protein), which converted in-caprolactone into 6-hydroxycaproate. 5. Incubation of 6-hydroxycaproate with 25000g supernatant in the presence of NAD(+) resulted in NAD(+) reduction under anaerobic conditions, oxygen consumption under aerobic conditions and the conversion of 6-hydroxycaproate into adipate. 6. Cyclohexanone oxygenase fractions devoid of in-caprolactone hydrolase catalysed the stoicheiometric formation of in-caprolactone from cyclohexanone in the presence of excess of NADPH. 7. The reaction sequence for the oxidation of cyclohexanone by N. globerula CL1 is: cyclohexanol --> cyclohexanone --> in-caprolactone --> 6-hydroxycaproate --> adipate. 8. It is suggested that the adipate may be further dissimilated by beta-oxidation.  相似文献   

2.
Aryl acylamidase was purified from an extract of N-acetyl-o-toluidine-induced cells of Nocardia globerula IFO 13510 in ten steps. The purified enzyme appeared to be homogeneous from analysis by polyacrylamide gel electrophoresis. The enzyme has a molecular mass of approximately 126 kDa and consists of two subunits which are identical in molecular mass. The purified enzyme catalyzed the hydrolysis of N-acetyl-o-toluidine to o-toluidine and acetic acid at a rate of 47.7 mumol.min-1.mg-1 at 35 degrees C. It also catalyzed the hydrolysis of various anilide derivatives and esters, as well as the transfer of an acetyl group to aniline as an acetyl acceptor. The purified enzyme was sensitive to thiol reagents such as HgCl2 and p-chloromercuribenzoate. The amino-terminal sequence (28 amino acid residues) of the enzyme was determined. Based on the substrate specificity of this enzyme, the pathway intermediates involved in the conversion of n-acetyl-o-toluidine to 4'-hydroxy-N-acetyl-o-toluidine are discussed.  相似文献   

3.
A versatile nitrile-degrading bacterium was isolated by enrichment culture from the soil of a forest near Manali, Himachal Pradesh, India, and was identified as Nocardia globerula. This organism contains 3 enzymes with nitrile-degrading activity: nitrilase, nitrile hydratase, and amidase. Nocardia globerula NHB-2 cells grown on nutrient broth supplemented with 1% glucose and 0.1% yeast extract exhibited nitrile hydratase-amidase activity specific for saturated aliphatic nitriles or amide, while addition of acetonitrile in nutrient broth yielded cells with nitrile hydratase-amidase that in addition to saturated aliphatic nitriles-amide also hydrolyzed aromatic amide. Nocardia globerula NHB-2 cultivated on nutrient broth containing propionitrile exhibited nitrilase activity that hydrolyzed aromatic nitrile and unsaturated aliphatic nitrile. The versatility of this organism in the hydrolysis of various nitriles and amides makes it a potential bioresource for use in organic synthesis.  相似文献   

4.
Multiple forms of cyclohexanone oxygenase from Nocardia globerula CL1.   总被引:2,自引:0,他引:2  
The cyclohexanone 1,2-monooxygenase of Nocardia globerula CL1 exists as two electrophoretically distinct forms. These are present in crude cell extracts and are not artifacts of enzyme purification or electrophoresis. They have been separated in mg amounts by preparative polyacrylamide gel electrophoresis and shown to have essentially identical kinetic, spectral and physical characteristics. They do differ in pH-activity profile and temperature stability. Whether or not they are conformational isoenzymes or arise by gene duplication and divergent evolution has not been established. Cyclohexanone oxygenase constitutes 8% of the soluble protein of induced cells. This high level would correlate well with the presence of duplicate genes. It is proposed that the presence of a large amount of cyclohexanone oxygenase may confer an ecological advantage on the organism.  相似文献   

5.
6.
Nocardia globerula NHB-2 exhibited an intracellular acetonitrile hydrolysing activity (AHA) when cultivated in nutrient broth supplemented with glucose (10.0 g/l) and yeast extract (1.0 g/l), at pH 8.0, 30 degrees C for 21 hr. Maximum AHA was recorded in the culture containing 0.1 M of sodium phosphate buffer, (pH 8.8) at 45 degrees C for 15 min with 600 micromol of acetonitrile and resting cells of N. globerula NHB-2 equivalent to 1.0 ml culture broth. This activity was stable up to 40 degrees C and was completely inactivated at or above 60 degrees C. About five-fold increase in AHA was observed after optimization of culture and reaction conditions. Under the optimized conditions, this organism hydrolyzed various nitriles and amides such as propionitrile, benzonitrile. acetamide, and acrylamide to corresponding acids. This nitrile/amide hydrolysing activity of N. globerula NHB-2 has potential applications in enzymatic synthesis of organic acids and bioremediation of nitriles and amides contaminated soil and water system.  相似文献   

7.
Nocardia globerula strain 432 was able to synthesize triacylglycerols (TAG) during cultivation on 2,6,10,14-tetramethyl pentadecane (pristane) under nitrogen-limiting conditions. Within these cells, 4,8,12-trimethyl tridecanoic acid was the major fatty acid detected. Fatty acids with an odd number of carbon atoms and minor amounts of even-numbered fatty acids were also observed. Experiments carried out with acrylic acid, an inhibitor of beta-oxidation, suggested that odd-numbered fatty acids such as C15:0, C17:0 and 10-methyl C17:0 were synthesized de novo using propionyl-CoA, the beta-oxidation product, as precursor. Although N. globerula 432 incorporated mainly straight chain fatty acids into TAG, the branched fatty acid 4,8,12-trimethyl tridecanoic acid also appeared, to some extent, in the acylglycerols. The importance of TAG biosynthesis by pristane-grown cells of N. globerula strain 432 is discussed.  相似文献   

8.
9.
The free and agar immobilized cells of Nocardia globerula NHB-2 having nitrilase (EC 3.5.5.1) activity were used to catalyse the transformation of benzonitrile to benzoic acid. The whole cells of N. globerula NHB-2 were immobilized in agar which exhibited maximum conversion of benzonitrile to benzoic acid in 0.1 M potassium phosphate buffer pH 7.5 (free cells) 8.0 (immobilized cells), temperature 40 degrees C, cells 2 mg dcm ml(-1) reaction mixture and benzonitrile (4% v/v) in 4 h (free cells). The effect of temperature on the stability of nitrilase was studied and cells retained 100% activity at 30 degrees C and lost 50% activity at 40 degrees C. In a fed batch mode of reaction 108 and 84 gl(-1) benzoic acid was produced using free and agar entrapped cells (2 g dcm). The agar immobilized cells were recycled up to three times and 80, 62, 20 gl(-1) benzoic acid was again produced respectively in each of three cycles and a total 244 g benzoic acid was produced by recycling the same mass of immobilized biocatalyst.  相似文献   

10.
1. Cyclohexanone oxygenases from Norcardia globerula CL1 and Acinetobacter NCIB 9871 have been purified 12-fold and 35-fold respectively and each gives a single symmetrical sedimentation peak in the ultracentrifuge and a single protein band on 2.25 nm average pore radius polyacrylamide gels. 2. The enzyme from N. globerula has a molecular weight of 53000 while that from Acinetobacter has a molecular weight of about 59000. Each is a single polypeptide chain with one mole of bound FAD per mole of protein that does not dissociate during purification. Acidification of the Acinetobacter enzyme in the presence of (NH4)2SO4 releases the bound FAD and yields native apoenzyme from which the active holoenzyme can be reconstituted. The apparent dissociation constant for the FAD is 40 nM.  相似文献   

11.
12.
For the huge amount of chiral chemicals and precursors that can potentially be produced by biocatalysis, there is a tremendous need of enzymes with new substrate spectra, higher enantioselectivity, and increased activity. In this paper, a highly active alcohol dehydrogenase is presented isolated from Nocardia globerula that shows a unique substrate spectrum toward different prochiral aliphatic ketones and bulky ketoesters as well as thioesters. For example, the enzyme reduced ethyl 4-chloro-3-oxo butanoate with an ee >99% to (S)-4-chloro-3-hydroxy butanoate. Very interesting is also the fact that 3-oxobutanoic acid tert-butylthioester is reduced with 49.4% of the maximal activity while the corresponding tert-butyloxyester is not reduced at all. Furthermore, it has to be mentioned that acetophenone, a standard substrate for many known alcohol dehydrogenases, is not reduced by this enzyme. The enzyme was purified from wild-type N. globerula cells, and the corresponding 915-bp-long gene was determined, cloned, expressed in Escherichia coli, and applied in biotransformations. The N. globerula alcohol dehydrogenase is a tetramer of about 135 kDa in size as determined from gel filtration. Its sequence is related to several hypothetical 3-hydroxyacyl-CoA dehydrogenases whose sequences were derived by whole-genome sequencing from bacterial sources as well as known mammalian 3-hydroxyacyl-CoA dehydrogenases and ß-hydroxyacyl-CoA dehydrogenases from different clostridiae.  相似文献   

13.
Studies on the function of N-acetyl aspartic acid in brain   总被引:3,自引:1,他引:2  
  相似文献   

14.
15.
16.
17.
Studies on the mechanisms of ornithine decarboxylase in vitro inactivation   总被引:5,自引:0,他引:5  
Hydrocortisone-induced rat liver ornithine decarboxylase appears quite stable in the soluble fraction of the homogenate incubated at 37 degrees C. In contrast, the incubation of the whole homogenate causes a rapid loss of activity. The ornithine decarboxylase-inactivating capacity appears mainly bound to microsomes. Lysosomes seem to play a role only after the microsome-induced inactivation. Different reducing agents (dithiothreitol, NADPH, NADH, GSH) are effective both in preventing and in reversing ornithine decarboxylase inactivation. NADPH is peculiar in that it can reactivate the enzyme at very low concentrations. Oxidized glutathione potentiates the inactivating effect of microsomes. On the basis of present results it is suggested that ornithine decarboxylase may be reversibly inactivated through microsome-catalyzed formation of mixed or enzyme-enzyme disulfides and that NADPH plays a crucial role in ornithine decarboxylase reactivation, probably by cytosolic reductase(s).  相似文献   

18.
The degradation of ornithine decarboxylase was studied by an immunoblotting technique. The immunoblots of mouse kidney and brain cytosol preparations revealed degradation fragments of unequal size. The immunoreactive fragments found in kidney cytosol corresponded to molecular weights of 46 kDa and 32 kDa, whereas 36 kDa fragment was dominant in brain cytosol. When kidney cytosol was exposed to microsomal fraction of mouse brain before analysis, the kidney enzyme was degraded to 36 kDa-fragment. The microsomal fraction of mouse kidney, in turn, when incubated with brain cytosol brought about the appearance of immunoreactive protein corresponding to molecular weight of 35 kDa that was also found in kidney preparation, which was incubated as homogenate before electrophoretic run and immunoblotting. These results show that microsomal fractions effectively degrade enzyme protein, and suggest that the regulation mechanisms by the in vivo degradation of the enzyme are dissimilar in these tissues.  相似文献   

19.
20.
A procedure in which three sequential enzymes of cholesterol biosynthesis, mevalonate kinase (ATP: (R)-mevalonate 5-phosphotransferase, EC 2.7.1.36), phosphomevalonate kinase (ATP: (R)-5-phosphomevalonate phosphotransferase, EC 2.7.4.2) and mevalonate-5-diphosphate decarboxylase (ATP: (R)-5-diphosphomevalonate carboxy-lyase (dehydrating), EC 4.1.1.33), from pig liver, could be purified in the one operation is described. Mevalonate kinase and phosphomevalonate kinase were utilized for the enzymic synthesis of mevalonate 5-diphosphate (both 1-14C-labelled and unlabelled), the substrate for mevalonate-5-diphosphate decarboxylase, using excess free ATP4-. A radioactive assay for the enzyme, based on the release of 14CO2 from [1-14C]mevalonate-5-diphosphate, was developed. The assay allowed reassessment of the metal and nucleotide specificity of the decarboxylase. ATP could be partially replaced by GTP and ITP, but no activity was observed with CTP, UTP or TTP. Apparent activation of the enzyme by ATP4- was observed as found for mevalonate kinase (C.S. Lee and W.J. O'Sullivan (1983) Biochim. Biophys. Acta 747, 215-224) and phosphomevalonate kinase (C.S. Lee and W.J. O'Sullivan (1985) Biochim. Biophys. Acta 839, 83-89). The presence of 1 mM excess free ATP4-, above that complexed as the substrate MgATP2-, decreased the Km for MgATP2- from 0.45 mM to 0.15 mM. MgADP- was shown to act as a competitive inhibitor with respect to MgATP2-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号