首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The improvement for drought tolerance requires understanding of the genetic control of wheat (Triticum aestivum L.) reaction to drought. In this study, a set of 131 recombinant inbred lines of wheat were investigated under well-watered (WW) and drought stress (DS) environments across 2 years to map quantitative trait loci (QTLs) for yield and physiological traits. A total of 225 QTLs were detected, including 32 non-environment-specific loci that were significant in both DS and WW, one drought-specific locus and two watering-specific loci. Three consistently-expressed QTLs (QTkw-3A.2, QTss-1A, and QScn-7A.1) were identified in at least three environments and the QTkw-1D.1 was significant in DS across the 2 years. By unconditional and conditional QTL analysis, spike number per plant and kernel number per spike were more important than thousand-kernel weight for grain yield (GY) at the given genetic background. Meta-analysis identified 67 meta-QTLs that contained QTLs for at least two traits. High frequency co-location of QTLs was found among either the spike-related traits or the six physiological traits. Four photosynthesis traits (CHL, LWUE, P N, and C i) were co-located with GY and/or yield components on various MQTLs. The results provided QTLs that warrant further study for drought tolerance breeding and are helpful for understanding the genetic basis of drought tolerance and the genetic contribution of yield components to GY at individual QTL level in wheat.  相似文献   

2.

Key message

Chromosome regions affecting grain yield, grain yield components and plant water status were identified and validated in fall-sown spring wheats grown under full and limited irrigation.

Abstract

Increases in wheat production are required to feed a growing human population. To understand the genetic basis of grain yield in fall-sown spring wheats, we performed a genome-wide association study (GWAS) including 262 photoperiod-insensitive spring wheat accessions grown under full and limited irrigation treatments. Analysis of molecular variance showed that 4.1% of the total variation in the panel was partitioned among accessions originally developed under fall-sowing or spring-sowing conditions, 11.7% among breeding programs within sowing times and 84.2% among accessions within breeding programs. We first identified QTL for grain yield, yield components and plant water status that were significant in at least three environments in the GWAS, and then selected those that were also significant in at least two environments in a panel of eight biparental mapping populations. We identified and validated 14 QTL for grain yield, 15 for number of spikelets per spike, one for kernel number per spike, 11 for kernel weight and 9 for water status, which were not associated with differences in plant height or heading date. We detected significant correlations among traits and colocated QTL that were consistent with those correlations. Among those, grain yield and plant water status were negatively correlated in all environments, and six QTL for these traits were colocated or tightly linked (<?1 cM). QTL identified and validated in this study provide useful information for the improvement of fall-sown spring wheats under full and limited irrigation.
  相似文献   

3.
Xiaoyan 6, one of the most important founder parents in wheat, possesses many superior agronomic traits and has played a crucial role in Chinese wheat breeding programs. In this study, a panel of 66 elite wheat accessions derived from Xiaoyan 6 was planted in four growing seasons; genome-wide association study (GWAS) was performed for six yield-related traits using the wheat 90K genotyping assay. A total of 803 significant marker-trait associations (MTAs) that explained up to 35.0% of the phenotypic variation were detected. Of these, the locus QTkw-5B which contains 19 MTAs for thousand kernel weight (TKW) was consistently detected in three growing seasons and confirmed in a recombinant inbred line (RIL) population by developing simple sequence repeats (SSR) and kompetitive allele-specific PCR (KASP) markers. The locus QPh-3A containing eight repetitive MTAs for plant height (PH) was consistently identified in all the four growing seasons and validated in a RIL population by developing SSR markers. The transmission of Xiaoyan 6 allele indicated that the favorite allele of QPh-3A was strongly selected in breeding programs. Comparing with previous studies, QTkw-5B and QPh-3A should be novel QTL. The locus QFss-2D for fertile spikelet number per spike (FSS) was identified and then validated in three bi-parental populations. This locus controlled various spike-related traits and may be a key spike polymorphic locus. This study could provide insight into dissecting yield-related traits in the breeding population and reliable molecular markers that might be valuable for marker-assisted selection in wheat high-yield breeding programs.  相似文献   

4.

Key message

We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay.

Abstract

Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai?×?Shi 4185 (D?×?S), Gaocheng 8901?×?Zhoumai 16 (G?×?Z) and Linmai 2?×?Zhong 892 (L?×?Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5–32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.
  相似文献   

5.

Key message

An integrated genetic map was constructed for einkorn wheat A genome and provided valuable information for QTL mapping and genome sequence anchoring.

Abstract

Wheat is one of the most widely grown food grain crops in the world. The construction of a genetic map is a key step to organize biologically or agronomically important traits along the chromosomes. In the present study, an integrated linkage map of einkorn wheat was developed using 109 recombinant inbred lines (RILs) derived from an inter sub-specific cross, KT1-1 (T. monococcum ssp. boeoticum) × KT3-5 (T. monococcum ssp. monococcum). The map contains 926 molecular markers assigned to seven linkage groups, and covers 1,377 cM with an average marker interval of 1.5 cM. A quantitative trait locus (QTL) analysis of five agronomic traits identified 16 stable QTL on all seven chromosomes, except 6A. The total phenotypic variance explained by these stable QTL using multiple regressions varied across environments from 8.8 to 87.1 % for days to heading, 24.4–63.0 % for spike length, 48.2–79.6 % for spikelet number per spike, 13.1–48.1 % for plant architecture, and 12.2–26.5 % for plant height, revealing that much of the RIL phenotypic variation had been genetically dissected. Co-localizations of closely linked QTL for different traits were frequently observed, especially on 3A and 7A. The QTL on 3A, 5A and 7A were closely associated with Eps-A m 3, Vrn1 and Vrn3 loci, respectively. Furthermore, this genetic map facilitated the anchoring of 237 T. urartu scaffolds onto seven chromosomes with a physical length of 26.15 Mb. This map and the QTL data provide valuable genetic information to dissect important agronomic and developmental traits in diploid wheat and contribute to the genetic ordering of the genome assembly.
  相似文献   

6.

Main conclusion

This study explored 6P chromosomal translocations in wheat, and determined the effects of 6P intercalary chromosome segments on kernel number per wheat spike. Exploiting and utilising gene(s) from wild relative species has become an essential strategy for wheat crop improvement. In the translocation line Pubing2978, the intercalary 6P chromosome segment from Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP) carried valuable multi-kernel gene(s) and was selected from the offspring of the common wheat plant Fukuho and the irradiated wheat-A. cristatum 6P disomic substitution line 4844-8. Genomic in situ hybridisation (GISH), dual-colour fluorescence in situ hybridisation (FISH), and molecular markers were used to detect the small segmental 6P chromosome in the wheat background and its translocation breakpoint. Cytological studies demonstrated that Pubing2978 was a T1AS-6PL-1AS·1AL intercalary translocation with 42 chromosomes. The breakpoint was located near the centromeric region on the wheat chromosome 1AS and was flanked by the markers SSR12 and SSR283 based on an F2 linkage map. The genotypic data, combined with the phenotypic information, implied that A. cristatum 6P chromosomal segment plays an important role in regulating the kernel number per spike (KPS). By comparison, the mean value of KPS in plants with translocations was approximately 10 higher than that in plants without translocations in three segregated populations. Moreover, the improvement in KPS was likely achieved by increasing both the spikelet number per spike (SNS) and the kernel number per spikelet. These excellent agronomic traits laid the foundation for further investigation of valuable genes and make the Pubing2978 line a promising germplasm for wheat breeding.
  相似文献   

7.
Selecting high-yielding wheat cultivars with more productive tillers per unit area (PTN) combined with more fertile spikelets per spike (fSNS) is difficult. QTL mapping of these traits may aid understanding of this bottleneck and accelerate precision breeding for high yield via marker-assisted selection. PTN and fSNS were assessed in four to five trials from 2015 to 2017 in a doubled haploid population derived from two high-yielding cultivars “UI Platinum” and “SY Capstone.” Two QTL for PTN (QPTN.uia-4A and QPTN.uia-6A) and four QTL for fSNS (QfSNS.uia-4A, QfSNS.uia-5A, QfSNS.uia-6A, and QfSNS.uia-7A) were identified. The effects of the QTL were primarily additive and, therefore, pyramiding of multiple QTL may increase PTN and fSNS. However, the two QTL for PTN were positioned in the flanking regions for the two QTL for fSNS on chromosomes 4A and 6A, respectively, suggesting either possible pleiotropic effect of the same QTL or tightly linked QTL and explaining the difficulty of selecting both high PTN and fSNS in phenotypic selection. Kompetitive allele-specific PCR (KASP) markers for all identified QTL were developed and validated in a recombinant inbred line (RIL) population derived from the same two cultivars. In addition, KASP markers for three of the QTL (QPTN.uia-6A, QfSNS.uia-6A, and QfSNS.uia-7A) were further validated in a diverse spring wheat panel, indicating their usefulness under different genetic backgrounds. These KASP markers could be used by wheat breeders to select high PTN and fSNS.  相似文献   

8.

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (<?0.4 cM from the centromere). Using a large segregating population (~?2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
  相似文献   

9.
Thousand-kernel weight (TKW) is one of the major components of grain yield in wheat (Triticum aestivum). Identifying major quantitative trait loci (QTLs) for TKW and developing effective markers are prerequisite for success in marker-assisted selection (MAS) to improve wheat yield through breeding. This study mapped a major QTL, designated as TaTKW-7AL, for increasing TKW on the long arm of chromosome 7A of ‘Clark’ to a 1.3-cM interval between single nucleotide polymorphism (SNP) markers IWB13913 and IWA5913. This QTL explained 19.7 % of the phenotypic variation for TKW. A QTL for increasing kernel length (KL), one of the major components of TKW, was mapped in the same interval as TaTKW-7AL, suggesting that increased TKW by the QTL in ‘Clark’ is most likely due to the increased KL. Association analysis on a diversity panel of 200 US winter wheat accessions also identified a haplotype of three SNP markers (IWB13913, IWB6693 and IWA5913) that were tightly associated with the both KL and TKW. The analysis of allele frequencies of the haplotype in the diversity panel suggested that the favorable allele of TaTKW-7AL has not been strongly selected for in practice and has potential to be used to improve grain yield in US hard winter wheat breeding. Two user-friendly flanking KASPar markers, IWB13913 and IWA5913, were developed for MAS of TaTKW-7AL.  相似文献   

10.

Key message

Coincident regions on chromosome 4B for GW, on 5A for SD and TSS, and on 3A for SL and GNS were detected through an integration of a linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A and 6A were identified with high PVE% on a composite map.

Abstract

The panicle traits of wheat, such as grain number per spike and 1000-grain weight, are closely correlated with grain yield. Superior and effective alleles at loci related to panicles developments play a crucial role in the progress of molecular improvement in wheat yield breeding. Here, we revealed several notable allelic variations of seven panicle-related traits through an integration of genome-wide association mapping and a linkage analysis. The linkage analysis was performed using a recombinant inbred line (RIL) population (173 lines of F8:9) with a high-density genetic map constructed with 90K SNP arrays, Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) markers in five environments. Thirty-five additive quantitative trait loci (QTL) were discovered, including eleven stable QTLs on chromosomes 1A, 2D, 4B, 5B, 6B, and 6D. The marker interval between EX_C101685 and RAC875_C27536 on chromosome 4B exhibited pleiotropic effects for GW, SL, GNS, FSN, SSN, and TSS, with the phenotypic variation explained (PVE) ranging from 5.40 to 37.70%. In addition, an association analysis was conducted using a diverse panel of 205 elite wheat lines with a composite map (24,355 SNPs) based on the Illumina Infinium assay in four environments. A total of 73 significant marker-trait associations (MTAs) were detected for panicle traits, which were distributed across all wheat chromosomes except for 4D, 5D, and 6D. Consensus regions between RAC875_C27536_611 and Tdurum_contig4974_355 on chromosome 4B for GW in multiple environments, between QTSS5A.7-43 and BS00021805_51 on 5A for SD and TSS, and between QSD3A.2-164 and RAC875_c17479_359 on 3A for SL and GNS in multiple environments were detected through linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A, and 6A were identified with high PVE% on a composite map. This study provides potentially valuable information on the dissection of yield-component traits and valuable genetic alleles for molecular-design breeding or functional gene exploration.
  相似文献   

11.

Key message

A novel TaGW2-A1 allele was identified from a stable, robust QTL region, which is pleiotropic for thousand grain weight, grain number per spike, and grain morphometric parameters in wheat.

Abstract

Thousand grain weight (TGW) and grain number per spike (GNS) are two crucial determinants of wheat spike yield, and genetic dissection of their relationships can help to fine-tune these two components and maximize grain yield. By evaluating 191 recombinant inbred lines in 11 field trials, we identified five genomic regions on chromosomes 1B, 3A, 3B, 5B, or 7A that solely influenced either TGW or GNS, and a further region on chromosome 6A that concurrently affected TGW and GNS. The QTL of interest on chromosome 6A, which was flanked by wsnp_BE490604A_Ta_2_1 and wsnp_RFL_Contig1340_448996 and designated as QTgw/Gns.cau-6A, was finely mapped to a genetic interval shorter than 0.538 cM using near isogenic lines (NILs). The elite NILs of QTgw/Gns.cau-6A increased TGW by 8.33%, but decreased GNS by 3.05% in six field trials. Grain Weight 2 (TaGW2-A1), a well-characterized gene that negatively regulates TGW and grain width in wheat, was located within the finely mapped interval of QTgw/Gns.cau-6A. A novel and rare TaGW2-A1 allele with a 114-bp deletion in the 5′ flanking region was identified in the parent with higher TGW, and it reduced TaGW2-A1 promoter activity and expression. In conclusion, these results expand our knowledge of the genetic and molecular basis of TGW-GNS trade-offs in wheat. The QTLs and the novel TaGW2-A1 allele are likely useful for the development of cultivars with higher TGW and/or higher GNS.
  相似文献   

12.
Investigation of the pleiotropic effects of GA-sensitive (Rht8) and GA-insensitive (Rht-B1 and Rht-D1) winter bread wheat dwarfing genes and the gene that determines the response of plants to photoperiod—Ppd-D1—were carried out for 3 years in the southern step region of the Black Sea bank on five different genetic backgrounds. It is shown that, in addition to direct effects on plant height, GA-sensitive and GA-insensitive dwarfing genes have pleiotropic effects on all studied traits except the number of fertile spikelets. Presence of the dwarfing genes in the genotype of tall forms led to the decrease of stem and ear length, and, at the same time, to the increase of ear density. The number of spikelets per spike decreased due to sterile spikelets, whereas the number of fertile spikelets did not change. There was a significant increase in the number of grains per ear as a result of increasing of spikelets in ears. The number and weight of grains did not decrease, even though the plants were characterized by a smaller number of productive tillers. The presence of Rht8x allele on genetic background of variety Stepnyak resulted in a significant decrease of plants productivity. However, in combination with Ppd-D1a allele, plants with Rht8x increased the potential productivity and surpassed the parental form (Rht8x Ppd-D1a). The presence of Rht-Ble allele resulted in reduction of weight of kernels from the main ear and 1000-kernels weight, increase of l/h, and left the number of seeds per spikelet stable in comparison with Rht8x.  相似文献   

13.

Key message

Two QTL with pleiotropic effects on plant height and spike length linked in coupling phase on chromosome 2DS were dissected, and diagnostic marker for each QTL was developed.

Abstract

Plant height (PHT) is a crucial trait related to plant architecture and yield potential, and dissection of its underlying genetic basis would help to improve the efficiency of designed breeding in wheat. Here, two quantitative trait loci (QTL) linked in coupling phase on the short arm of chromosome 2D with pleiotropic effects on PHT and spike length, QPht/Sl.cau-2D.1 and QPht/Sl.cau-2D.2, were separated and characterized. QPht/Sl.cau-2D.1 is a novel QTL located between SNP makers BS00022234_51 and BobWhite_rep_c63957_1472. QPht/Sl.cau-2D.2 is mapped between two SSR markers, SSR-2062 and Xgwm484, which are located on the same genomic interval as Rht8. Moreover, the diagnostic marker tightly linked with each QTL was developed for the haplotype analysis using diverse panels of wheat accessions. The frequency of the height-reduced allele of QPht/Sl.cau-2D.1 is much lower than that of QPht/Sl.cau-2D.2, suggesting that this novel QTL may be an attractive target for genetic improvement. Consistent with a previous study of Rht8, a significant difference in cell length was observed between the NILs of QPht/Sl.cau-2D.2. By contrast, there was no difference in cell length between NILs of QPht/Sl.cau-2D.1, indicating that the underlying molecular mechanism for these two QTL may be different. Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.1 and/or QPht/Sl.cau-2D.2 with the other genes in wheat breeding.
  相似文献   

14.

Key message

A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4.

Abstract

Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar ‘Zhonghui 8006’ (ZH8006) and a japonica rice ‘Wuyunjing 8’ (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.
  相似文献   

15.

Key message

Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency.

Abstract

Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutEGY) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutEGY. A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.
  相似文献   

16.

Key message

Novel QTL for salinity tolerance traits have been detected using non-destructive and destructive phenotyping in bread wheat and were shown to be linked to improvements in yield in saline fields.

Abstract

Soil salinity is a major limitation to cereal production. Breeding new salt-tolerant cultivars has the potential to improve cereal crop yields. In this study, a doubled haploid bread wheat mapping population, derived from the bi-parental cross of Excalibur?×?Kukri, was grown in a glasshouse under control and salinity treatments and evaluated using high-throughput non-destructive imaging technology. Quantitative trait locus (QTL) analysis of this population detected multiple QTL under salt and control treatments. Of these, six QTL were detected in the salt treatment including one for maintenance of shoot growth under salinity (QG(15).asl-7A), one for leaf Na+ exclusion (QNa.asl-7A) and four for leaf K+ accumulation (QK.asl-2B.1, QK.asl-2B.2, QK.asl-5A and QK:Na.asl-6A). The beneficial allele for QG(15).asl-7A (the maintenance of shoot growth under salinity) was present in six out of 44 mainly Australian bread and durum wheat cultivars. The effect of each QTL allele on grain yield was tested in a range of salinity concentrations at three field sites across 2 years. In six out of nine field trials with different levels of salinity stress, lines with alleles for Na+ exclusion and/or K+ maintenance at three QTL (QNa.asl-7A, QK.asl-2B.2 and QK:Na.asl-6A) excluded more Na+ or accumulated more K+ compared to lines without these alleles. Importantly, the QK.asl-2B.2 allele for higher K+ accumulation was found to be associated with higher grain yield at all field sites. Several alleles at other QTL were associated with higher grain yields at selected field sites.
  相似文献   

17.
Heavy rain during the wheat seedling stage, drought in the flowering stage, and high temperatures with high humidity prior to harvest all contribute to substantial reductions in overall wheat yields in the Chinese province of Sichuan. In this study, we explored the effects of Rht-B1 and Yr18 in Chuannong16 (CN16) and a population derived from breeding line 30481. The population of 188 recombinant inbred lines was genotyped using an iSelect 90,000 single nucleotide polymorphism array and two functional markers for Rht-B1 and Yr18, and was phenotyped over 2 years in replicated trials. Grain yield was highly correlated with leaf color, plant height, and thousand kernel weights, and was negatively correlated with sedimentation. Plant height was positively correlated with grain yield and leaf color and negatively correlated with the number of tillers, thousand kernel weight, and sedimentation volume. In addition, sedimentation was negatively correlated with all five of the other traits (plant height, leaf color, tillers per square meter, grain yield, and thousand kernel weight) using both genetic and phenotypic correlation. The semi-dwarf allele Rht-B1b reduced plant height, grain yield, and thousand kernel weight. Yr18 did not affect stripe rust or other agronomic traits in the population examined. A total of 15 quantitative trait locii (QTLs) were identified for seven traits over 2 years, except for grain yield. One pleiotropic QTL on chromosome 4B was significantly associated with leaf color, thousand kernel weight, and plant height, but it was in different scaffolds with Rht-B1 on the physical map. We found a co-segregation SNP marker with Yr18 in our population; they were not in the same region on the physical map. This may be due to the relatively small population size and limited recombinant events in the population.  相似文献   

18.
Grain protein content (GPC) in durum wheat (Triticum turgidum var. durum) is negatively correlated with grain yield. To evaluate possible genetic interrelationships between GPC and grain yield per spike, thousand-kernel weight and kernel number per spike, quantitative trait loci (QTL) for GPC were mapped using GPC-adjusted data in a covariance analysis on yield components. Phenotypic data were evaluated in a segregating population of 120 recombinant inbred lines derived from crossing the elite cultivars Svevo and Ciccio. The material was tested at five environments in southern Italy. QTL were determined by composite interval mapping based on the Svevo?×?Ciccio linkage map described in Gadaleta et al. (2009) and integrated with DArT markers. The close relationship between GPC and yield components was reflected in the negative correlation between the traits and in the reduction of variance when GPC values were adjusted to yield components. Ten independent genomic regions involved in the expression of GPC were detected, six of which were associated with QTL for one or more grain yield components. QTL alleles with increased GPC effects were associated with QTL alleles with decreased effects on one or more yield component traits, or vice versa (i.e. the allelic effects were in opposite direction). Four QTL for GPC showed always significant effects, and these QTL should represent genes that influence GPC independently from variation in the yield components. Such genes are of special interest in wheat breeding since they would allow an increase in GPC without a concomitant decrease in grain yield.  相似文献   

19.
Improving grain yield is the ultimate goal of the maize-breeding programs. In this study, analyses of conditional and unconditional quantitative trait locus (QTL) and epistatic interactions were used to elucidate the genetic architecture of yield and its related traits. A total of 15 traits of a recombinant inbred line population, including yield per plant (YPP), seven ear-related traits, and seven kernel-related traits, were measured in six different environments. Based on the genetic linkage map constructed using 2091 bins as markers, 56 main-effect QTLs for these traits were identified. These QTLs were distributed across eight genomic regions (bin 1.06, bin 4.02/4.05/4.08, bin 5.04, bin 7.04, bin 8.08, and bin 9.04), within the marker intervals of 85.45–6260.66 kb, and the phenotypic variance explained ranging from 5.69 to 11.56 %. One gene (GRMZM2G168229) encoding SBP-box domain protein was located in the small interval of qKRN4-3 and may be involved in patterning of kernel row number. Seventeen conditional QTLs identified for YPP were conditioned on its related traits and explained 6.18–23.15 % of the phenotypic variance. Conditional mapping analysis revealed that qYPP4-1, qYPP6-1, and qYPP8-1 are partially influenced by YPP-related traits at the individual QTL level. Digenic epistatic analysis identified 12 digenic interactions involving 22 loci across the whole genome. In addition, conditional digenic epistatic analysis identified 14 digenic interactions involving 21 loci. This study provides valuable information for understanding the genetic relationship between YPP and related traits and constitutes the first step toward the cloning of the relevant genes.  相似文献   

20.

Key message

The temporal and spatial expression patterns of stable QTL for plant height and their influences on yield were characterized.

Abstract

Plant height (PH) is a complex trait in wheat (Triticum aestivum L.) that includes the spike length (SL) and the internode lengths from the first to the fifth internode, which are counted from the top and abbreviated as FIRITL, SECITL, THIITL, FOUITL, and FIFITL, respectively. This study identified eight putative additive quantitative trait loci (QTL) for PH. In addition, unconditional and conditional QTL mapping were used to analyze the temporal and spatial expression patterns of five stable QTL for PH. qPh-3A mainly regulated SL, FIRITL, and FIFITL to affect PH during the booting–heading stage (BS–HS); qPh-3D regulated all internode lengths to affect PH, especially during the BS–HS; before HS, qPh-4B mainly affected FIRITL, SECITL, THIITL, and FOUITL and qPh-5A.1 mainly affected SECITL, THIITL, and FOUITL to regulate PH; and qPh-6B mainly regulated FIRITL to affect the PH after the booting stage (BS). qPhdv-4B, a QTL for the response of PH to nitrogen stress, was stable and co-localized with qPh-4B. All five stable QTL, except for qPh-3A, were related to the 1000 kernel weight and yield per plant. Regions of qPh-3A, qPh-3D, qPh-4B, qPh-5A.1, and qPh-6B showed synteny to parts of rice chromosomes 1, 1, 3, 9, and 2, respectively. Based on comparative genomics analysis, Rht-B1b was cloned and mapped in the CI of qPh-4B. This report provides useful information for fine mapping of the stable QTL for PH and the genetic improvement of wheat plant type.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号