共查询到20条相似文献,搜索用时 15 毫秒
1.
A doubled haploid (DH) population derived from a cross between the Japanese cultivar 'Fukuho-kumogi' and the Israeli wheat line 'Oligoculm' was used to map genome regions involved in the expression of grain yield, yield components, and spike features in wheat (Triticum aestivum L). A total of 371 markers (RAPD, SSR, RFLP, AFLP, and two morphological traits) were used to construct the linkage map that covered 4190 cM of wheat genome including 28 linkage groups. The results of composite interval mapping for all studied traits showed that some of the quantitative trait loci (QTL) were stable over experiments conducted in 2004 and 2005. The major QTL located in the Hair-Xpsp2999 interval on chromosome 1A controlled the expression of grains/spike (R(2) = 12.9% in 2004 and 22.4% in 2005), grain weight/spike (R(2) = 21.4% in 2004 and 15.8% in 2005), and spike number (R(2) = 15.6% in 2004 and 5.4% in 2005). The QTL for grain yield located on chromosomes 6A, 6B, and 6D totally accounted for 27.2% and 31.7% of total variation in this trait in 2004 and 2005, respectively. Alleles inherited from 'Oligoculm' increased the length of spikes and had decreasing effects on spike number. According to the data obtained in 2005, locus Xgwm261 was associated with a highly significant spike length QTL (R(2) = 42.33%) and also the major QTL for spikelet compactness (R(2) = 26.1%). 相似文献
2.
不同小麦品种耗水特性和籽粒产量的差异 总被引:9,自引:0,他引:9
在田间试验条件下,采用10个小麦品种,设全生育期不灌水(W0)、灌底墒水+拔节水(W1)、灌底墒水+拔节水+开花水(W2)3个处理,每次灌水量60 mm,研究不同小麦品种不同生育阶段的耗水特点和籽粒产量的差异.结果表明:以W0、W1和W2处理的小麦籽粒产量和水分利用效率(WUE)2因子为指标进行聚类分析,可将10个品种分为3组:高产高水分利用效率组(组Ⅰ)、高产中水分利用效率组(组Ⅱ)和中产低水分利用效率组(组Ⅲ).在W0处理下,组Ⅰ小麦品种的总耗水量、开花至成熟期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,籽粒产量最高;在W1处理下,组Ⅰ小麦品种拔节至开花期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,开花至成熟期的耗水量和耗水模系数在组Ⅰ、组Ⅱ和组Ⅲ间无显著差异;在W2处理下,组Ⅰ小麦品种的土壤供水量、拔节至开花期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,开花至成熟期的耗水量和耗水模系数为组Ⅰ和组Ⅲ低于组Ⅱ.表明组Ⅰ高产高水分利用效率品种为最适宜品种,而底墒水和拔节水各灌60 mm的W1处理是兼顾高产与节水的最佳处理. 相似文献
3.
Genetic analysis of grain protein-content,grain yield and thousand-kernel weight in bread wheat 总被引:21,自引:0,他引:21
Groos C Robert N Bervas E Charmet G 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,106(6):1032-1040
Grain yield and grain protein content are two very important traits in bread wheat. They are controlled by genetic factors, but environmental conditions considerably affect their expression. The aim of this study was to determine the genetic basis of these two traits by analysis of a segregating population of 194 F(7) recombinant inbred lines derived from a cross between two wheat varieties, grown at six locations in France in 1999. A genetic map of 254 loci was constructed, covering about 75% of the bread wheat genome. QTLs were detected for grain protein-content (GPC), yield and thousand-kernel weight (TKW). 'Stable' QTLs (i.e. detected in at least four of the six locations) were identified for grain protein-content on chromosomes 2A, 3A, 4D and 7D, each explaining about 10% of the phenotypic variation of GPC. For yield, only one important QTL was found on chromosome 7D, explaining up to 15.7% of the phenotypic variation. For TKW, three QTLs were detected on chromosomes 2B, 5B and 7A for all environments. No negative relationships between QTLs for yield and GPC were observed. Factorial Regression on GxE interaction allowed determination of some genetic regions involved in the differential reaction of genotypes to specific climatic factors, such as mean temperature and the number of days with a maximum temperature above 25 degrees C during grain filling. 相似文献
4.
J. Lee P. J. Kaltsikes 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1973,43(5):226-231
Summary Correlation, stepwise multiple regression and factor analyses were conducted on grain yield and a number of agronomic characters in the parental, F
1 and F
2 families originating from a 10 X 10 diallel cross in durum wheat. For the F
1 diallel, the correlation analysis indicated that the number of spikes and kernels per plant and 1,000 kernel weight had the highest correlations with grain yield; for the F
2 diallel, the number of spikes and kernels per meter, 1000 kernel weight and plant height showed most striking correlations with same.Stepwise multiple regression analysis indicated that, for the F
1 diallel, number of kernels per plant, 1000 kernel weight and days to maturity were the most potent predictor variables for grain yield, accounting for 78% of its variability. For the F
2 diallel, the number of kernels and number of spikes per meter, 1000 kernel weight and number of kernels per spike were the most potent predictors for grain yield, accounting for 91 % of its variability. Five common factors were extracted which explained 98.8% and 98.1% of the total variance in the F
1 and F
2 diallel, respectively. However, the importance of each of the five factors and the characters which loaded highly on each of them differed from generation to generation.Contribution No. 323 from Plant Science Department, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada. 相似文献
5.
K. Kato H. Miura S. Sawada 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2000,101(7):1114-1121
Chromosome 5A of wheat is known to carry a number of genes affecting adaptability and productivity. To localize quantitative
trait loci (QTLs) controlling grain yield and its components, an RFLP map was constructed from 118 single-chromosome recombinant
lines derived from the F1 between Chinese Spring (Cappelle-Desprez 5A) and Chinese Spring (Triticum spelta 5A). The map was combined with the field-trial data scored over 3 years. A total of five regions in chromosome 5A contributed
effects on yield traits. Increases in grain yield, 50-grain weight and spikelet number/ear were determined by complementary
QTL alleles from both parents. The effects associated with the vernalization requirement gene Vrn-A1 or a closely linked QTL were significant only in the favorable growing season where the later-flowering vrn-A1 allele from Cappelle-Desprez 5A produced a higher tiller number/plant and spikelet number/ear. The effects of the ear morphology
gene q or closely linked QTL(s) were detected for grain yield and ear grain weight. Three other QTLs with minor effects were dispersed
along chromosome 5A. These QTLs had large interactions with years due to changes in the magnitude of the significant response.
The alleles from T. spelta, however, conferred a higher yield performance.
Received: 18 August 1999 / Accepted: 25 March 2000 相似文献
6.
Epistatic interaction is an important genetic basis of grain yield and its components in maize 总被引:4,自引:0,他引:4
X. Q. Ma J. H. Tang W. T. Teng J. B. Yan Y. J. Meng J. S. Li 《Molecular breeding : new strategies in plant improvement》2007,20(1):41-51
A population of 294 recombinant inbred lines (RIL) derived from Yuyu22, an elite maize hybrid extending broadly in China,
has been constructed to investigate the genetic basis of grain yield, and associated yield components in maize. The main-effect
quantitative trait loci (QTL), digenic epistatic interactions, and their interactions with the environment for grain yield
and its three components were identified by using the mixed linear model approach. Thirty-two main-effect QTL and forty-four
pairs of digenic epistatic interactions were detected for the four measured traits in four environments. Our results suggest
that both additive effects and epistasis (additive × additive) effects are important genetic bases of grain yield and its
components in the RIL population. Only 30.4% of main-effect QTL for ear length were involved in epistatic interactions. This
implies that many loci in epistatic interactions may not have significant effects for traits alone but may affect trait expression
by epistatic interaction with the other loci. 相似文献
7.
LIN WANG FA CUI JINPING WANG LI JUN ANMING DING CHUNHUA ZHAO XINGFENG LI DESHUN FENG JURONG GAO HONGGANG WANG 《Journal of genetics》2012,91(3):303-312
Grain protein content in wheat (Triticum aestivum L.) is generally considered a highly heritable character that is negatively correlated with grain yield and yield-related traits. Quantitative trait loci (QTL) for protein content was mapped using data on protein content and protein content conditioned on the putatively interrelated traits to evaluate possible genetic interrelationships between protein content and yield, as well as yield-related traits. Phenotypic data were evaluated in a recombinant inbred line population with 302 lines derived from a cross between the Chinese cultivar Weimai 8 and Luohan 2. Inclusive composite interval mapping using IciMapping 3.0 was employed for mapping unconditional and conditional QTL with additives. A strong genetic relationship was found between protein content and grain yield, and yield-related traits. Unconditional QTL mapping analysis detected seven additive QTL for protein content, with additive effects ranging in absolute size from 0.1898% to 0.3407% protein content, jointly accounting for 43.45% of the trait variance. Conditional QTL mapping analysis indicated two QTL independent from yield, which can be used in marker-assisted selection for increasing yield without affecting grain protein content. Three additional QTL with minor effects were identified in the conditional mapping. Of the three QTLs, two were identified when protein content was conditioned on yield, which had pleiotropic effects on those two traits. Conditional QTL mapping can be used to dissect the genetic interrelationship between two traits at the individual QTL level for closely correlated traits. Further, conditional QTL mapping can reveal additional QTL with minor effects that are undetectable in unconditional mapping. 相似文献
8.
Five cultivars and the half diallel set of 10 F1 hybrids of flue-cured tobacco (Nicotiana tabacum L.) were grown in two seasons. Highly significant differences were assessed between genotypes as concerns flowering time, plant height, number of leaves, leaf length and width and yield per plot. High to moderate values for heritability in the broad sense were obtained in all cases. Hybrids, in general, flowered earlier, were taller, had fewer but shorter and wider leaves and slightly increased yield when compared with the mean value of all parents. The variance associated with general combining ability (GCA) was highly significant in all characters. The estimates of SCA were significant in most cases. High GCA/SCA ratios which largely exceeded the unity were obtained for most attributes. The negative and positive alleles were unequally distributed in the parents for all the studied traits. A small number of effective genes was obtained for all characters except plant height, where one to two groups of genes were distinguished 相似文献
9.
B. Borghi M. Perenzin 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1994,89(7-8):975-981
Combining ability for grain yield, yield components, and several agronomic and qualitative traits, was studied in a seven-parent diallel cross. The 21 F1 hybrids and the seven parental cultivars were grown in replicated plot trials sown at normal seed density in three locations in the years 1992 and 1993. The effects of general combining ability (gca) were highly significant for all the traits measured with the exception of seeds per spikelet, while the specific combining ability (sca) effects were statistically significant for grain yield, plant height, heading time, for all the yield components, and for the Chopin alveographic parameters P and P/L ratio. For the majority of the traits measured gca was greater than sca. Standard heterosis (sh) for grain yield, i.e., the superiority of the hybrids over the best pure line cultivar(cv Eridano), was only 3.3%, confirming previous finding which indicate sh effects in the range of 10%. The most interesting hybrid derived from the cross Maestra x Golia revealed a yield level approaching that of the highest yielding cv Eridano but appeared more interesting because of its reduced plant height and superior bread-making quality, signifying a selling price 30% higher. It was concluded, therefore, that the first generation of hybrids, likely to appear on the market in the next few years, will be characterized by a yield potential only slightly superior to that of the best standard cvs but associated with other desirable traits, such as bread-making quality. 相似文献
10.
有机无机肥长期配合施用对冬小麦籽粒品质的影响 总被引:13,自引:0,他引:13
提高籽粒品质和产量是当前国内小麦生产的核心。小麦品质和产量取决于基因型、生态环境 (如土壤肥力等 )和栽培技术(尤其是养分管理技术 )。长期肥料试验是研究养分管理对小麦产量和品质影响的有效手段 ,迄今 ,长期施肥对小麦产量的影响报道很多 ,但对籽粒品质的影响报道很少。在 2 0 a长期定位肥料试验的基础上 ,研究了有机无机肥长期配合施用对不同类型小麦籽粒品质性状的影响。结果表明 ,有机肥主效应对小麦籽粒产量有显著作用 ,而对大部分品质指标无影响 ;无机肥处理主效应及有机无机肥交互效应对籽粒产量和大部分品质性状均有显著影响。有机无机肥料配合施用与单施无机肥处理相比提高了小麦大部分品质性状 ,有利于强筋小麦籽粒产量和品质的同步提高 ,但不利于弱筋小麦品质的改善。进一步分析了土壤肥力及磷钾肥对小麦籽粒品质的影响 相似文献
11.
为缓解农业用水供需矛盾,解决井灌区地下水超采问题,探究华北平原广泛分布的地下咸水灌溉对冬小麦品质和产量的影响,实现农业可持续发展,本研究在始于2006年的长期定位试验基础上,设置1、2、4、6、8 g·L-1共5个灌溉水矿化度处理,其中1 g·L-1灌溉水(取自当地地下水)为对照,研究咸水灌溉对冬小麦籽粒品质特性和产量性状的影响。结果表明: 与对照相比,当灌溉水矿化度≥4 g·L-1时可显著增加籽粒吸水量、面团形成时间、沉淀值、湿面筋和粗蛋白含量,但显著降低出粉率、面团稳定时间和面筋指数;长期灌溉高矿化度咸水(4~8 g·L-1)显著降低了冬小麦穗数(44.0%~60.7%)和籽粒产量(35.6%~64.7%)。在连续多年咸水灌溉条件下,与对照相比,2 g·L-1灌水处理对籽粒产量及产量构成因素无显著影响,且能提高吸水量、面团形成时间、沉淀值、湿面筋和粗蛋白含量等籽粒品质。采用主成分分析法对冬小麦产量性状和品质特性进行综合性评价,得出2 g·L-1灌水处理综合效果最优。本研究可为华北平原咸水资源高效利用提供理论支撑。 相似文献
12.
长期耕作方式对小麦光合特性和产量的影响 总被引:1,自引:0,他引:1
以济麦22为供试材料,在大田条件下,9年定位设置旋耕(R)、翻耕(P)、间隔2年深松+条旋耕(SRS)、间隔2年深松+旋耕(RS)4种耕作方式,在2014—2015年和2015—2016年小麦生长季研究不同耕作方式对小麦旗叶光合特性、干物质积累与分配和产量的影响.结果表明: SRS处理小麦旗叶净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(gs)在开花后21~35 d均显著高于其他处理.灌浆期SRS处理平均冠层光合有效辐射(PAR)截获率显著高于RS和P处理,R处理最低.成熟期SRS处理干物质积累量、开花后干物质向籽粒的分配量和对籽粒的贡献率最高,均显著高于其他处理.SRS处理小麦籽粒产量和水分利用效率均显著高于其他处理;总耗水量与RS处理无显著差异,显著高于P和R处理.在本试验条件下,间隔2年深松+条旋耕的耕作方式是节水高产高效的最佳耕作处理. 相似文献
13.
Three crosses of spring wheat (Triticum aestivum L. em Thell) involving six cultivars (WC29, WH291, SGP 14, RAJ. 1972, WH377 and HD 2329) were selected on the basis of combining ability analysis to study genetics of transgressive segregation for tillers/plant, grains/spike, 1000 grain weight and grain yield/plant using various mating designs. Diallel analysis indicated that both additive and non- additive components were significant for all the characters. On the basis of general combining ability and specific combining ability effects, the parents WH 291 and WH 377 were found to be good general combiners for tillers/ plant, 1000 grain weight and grain yield/plant. For grains/spike SGP 14 was found to be a good general combiner. The cross WH 377 × HD 2329 for tillers/plant, SGP 14 × Raj. 1972 for grains/spike and grain yield/plant and WC 29 × WH 291 for 1000 grain weight were found to be good cross combinations. Generation mean analysis indicated that the additive-dominance model was inadequate for all the characters in all the crosses except for 1000 grain weight in WC29 × WH291. Additive component was more pronounced than non-additive components for all the characters in all the crosses except for tillers/ plant in WH 377 × HD 2329. Predictions for transgressive segregants from F3 was more accurate than that from generation mean analysis. However, prediction from both the sources were equally efficient if additive-dominance model was adequate. In general, observed frequencies of transgressive segregants were more in F2 and BIPi than F4 but the majority of them were discarded on progeny testing. Biparental mating had an impact in increasing the frequencies of transgressive segregants for different characters in all the crosses. The crosses, WH 377 × HD 2329 for grain yield/ plant, SGP 14 × Raj. 1972 for tillers/plant and WC 29 × WH 291 for grains/spike and 1000 grain weight were found to be potential crosses for transgressive segregants. A comparison of combining ability of parents and crosses, and observed and predicted frequencies of transgressive segregants indicated that the potential crosses for transgressive segregants were those that had high sea effects and involved high and low general combiners. The crosses involving low general combiners irrespective of their sea effects showed poor performance with respect to transgressive segregation. 相似文献
14.
Kuchel H Williams KJ Langridge P Eagles HA Jefferies SP 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,115(8):1029-1041
Grain yield forms one of the key economic drivers behind a successful wheat (Triticum aestivum L.) cropping enterprise and is consequently a major target for wheat breeding programmes. However, due to its complex nature,
little is known regarding the genetic control of grain yield. A doubled-haploid population, comprising 182 individuals, produced
from a cross between two cultivars ‘Trident’ and ‘Molineux’, was used to construct a linkage map based largely on microsatellite
molecular makers. ‘Trident’ represents a lineage of wheat varieties from southern Australia that has achieved consistently
high relative grain yield across a range of environments. In comparison, ‘Molineux’ would be rated as a variety with low to
moderate grain yield. The doubled-haploid population was grown from 2002 to 2005 in replicated field experiments at a range
of environments across the southern Australian wheat belt. In total, grain yield data were recorded for the population at
18 site-year combinations. Grain yield components were also measured at three of these environments. Many loci previously
found to be involved in the control of plant height, rust resistance and ear-emergence were found to influence grain yield
and grain yield components in this population. An additional nine QTL, apparently unrelated to these traits, were also associated
with grain yield. A QTL associated with grain yield on chromosome 1B, with no significant relationship with plant height,
ear-emergence or rust resistance, was detected (LOD ≥2) at eight of the 18 environments. The mean yield, across 18 environments,
of individuals carrying the ‘Molineux’ allele at the 1B locus was 4.8% higher than the mean grain yield of those lines carrying
the ‘Trident’ allele at this locus. Another QTL identified on chromosome 4D was also associated with overall gain yield at
six of the 18 environments. Of the nine grain yield QTL not shown to be associated with plant height, phenology or rust resistance,
two were located near QTL associated with grain yield components. A third QTL, associated with grain yield components at each
of the environments used for testing, was located on chromosome 7D. However, this QTL was not associated with grain yield
at any of the environments. The implications of these findings on marker-assisted selection for grain yield are discussed. 相似文献
15.
灌溉频次和时期对冬小麦籽粒产量及品质特性的影响 总被引:8,自引:0,他引:8
为探讨我国北方地区冬小麦的节水灌溉模式,2006—2008年,在中国科学院栾城农业生态系统试验站,以冬小麦品种科农9204为试验材料,在总灌溉量为120mm的条件下,研究了灌溉次数和灌溉时期对籽粒产量、水分利用效率(WUE)、籽粒蛋白质含量以及相关主要品质特性的影响。结果表明,拔节期、抽穗期和灌浆期一次灌溉分别有利于产量、干物质积累量和千粒重的形成或提高;两次灌溉处理中,以拔节和抽穗期各灌60mm处理籽粒产量最高,籽粒蛋白质产量有随灌溉时期后移而降低的趋势;冬小麦生育期间随灌溉次数增多和灌溉时期后移,湿面筋含量、面团形成时间、面团稳定时间等均显著降低。综合考虑冬小麦的籽粒产量、WUE、营养品质和加工品质,在总灌溉量为120mm的条件下,以拔节和抽穗期各灌溉60mm为宜。 相似文献
16.
Yinchao Zhang Yu Hu Zhongrong Guan Peng Liu Yongcong He Chaoying Zou Peng Li Shibin Gao Hua Peng Cong Yang Guangtang Pan Yaou Shen Langlang Ma 《Physiologia plantarum》2020,170(4):508-518
The free moisture in crop kernels after being naturally dried is referred to as kernel moisture content (KMC). Maize KMC reflects grain quality and influences transportation and storage of seeds. We used an IBM Syn10 DH maize population consisting of 249 lines and an association panel comprising 310 maize inbred lines to identify the genetic loci affecting maize KMC in three environments. Using the IBM population detected 13 QTL on seven chromosomes, which were clustered into nine common QTL. Genome-wide association analysis (GWAS) identified 16 significant SNPs across the 3 environments, which were linked to 158 genes across the three environments. Combined QTL mapping and GWAS found two SNPs that were located in two of the mapped QTL, respectively. Twenty-three genes were linked with the loci co-localized in both populations. Of these 181 genes, five have previously been reported to be associated with KMC or to regulate seed development. These associations were verified by candidate gene association analysis. Two superior alleles and one favorable haplotype for Zm00001d007774 and Zm00001d047868 were found to influence KMC. These findings provide insights into molecular mechanisms underlying maize KMC and contribute to the use of marker-assisted selection for breeding low-KMC maize. 相似文献
17.
超大穗小麦籽粒灌浆特性研究 总被引:8,自引:3,他引:8
超大穗小麦是小麦超高产育种的宝贵资源,通过去穗处理,对不同类型的超大穗小麦灌浆特性进行了方程拟合及参数分析,结果表明:①百粒重的增重进程,在不同处理间无显著差异,不同品系间差异明显;②单株粒重的增重进程,在不同处理间、不同品系间都表现出显著差异,不同处理间更为突出;③对灌浆参数分析,超大穗小麦的最大灌浆速度与对照基本一致,但灌浆期显著的长,86(306)达50d,90(151)43d,而对照小偃6号、咸农151分别为40d,35d。依次配合相应的栽培技术,可有效的发挥超大穗小麦产量潜力。 相似文献
18.
Sishen Li Jizeng Jia Xianyun Wei Xiaocun Zhang Linzhi Li Haimei Chen Yuding Fan Haiyan Sun Xinhua Zhao Tiandong Lei Yunfong Xu Fangshan Jiang Honggang Wang Lihui Li 《Molecular breeding : new strategies in plant improvement》2007,20(2):167-178
A new genetic linkage map was constructed based on recombinant inbred lines (RILs) derived from the cross between the Chinese
winter wheat (Triticum aestivum L.) varieties, Chuang 35050 and Shannong 483 (ChSh). The map included 381 loci on all the wheat chromosomes, which were composed
of 167 SSR, 94 EST-SSR, 76 ISSR, 26 SRAP, 15 TRAP, and 3 Glu loci. This map covered 3636.7 cM with 1327.7 cM (36.5%), 1485.5 cM (40.9%), and 823.5 cM (22.6%) for A, B, and D genome,
respectively, and contained 13 linkage gaps. Using the RILs and the map, we detected 46 putative QTLs on 12 chromosomes for
grain yield (GY) per m2, thousand-kernel weight (TKW), spike number (SN) per m2, kernel number per spike (KNS), sterile spikelet number per spike (SSS), fertile spikelet number per spike (FSS), and total
spikelet number per spike (TSS) in four environments. Each QTL explained 4.42–70.25% phenotypic variation. Four QTL cluster
regions were detected on chromosomes 1D, 2A, 6B, and 7D. The most important QTL cluster was located on chromosome 7D near
the markers of Xwmc31, Xgdm67, and Xgwm428, in which 8 QTLs for TKW, SN, SSS and FSS were observed with very high contributions (27.53–67.63%). 相似文献
19.
Artificial selection (domestication and breeding) leaves a strong footprint in plant genomes. Second generation high throughput
DNA sequencing technologies make it possible to sequence the gene complement of a plant genome within 3 to 5 months, and the
costs of doing so are declining very quickly. This makes it practical to identify genomic regions that have undergone very
strong selection. Available reference sequences of important crops such as rice, maize, and sorghum will promote the wide
use of re-sequencing strategies in these crops. Marker/trait associations, especially haplotype (or haplotype block) association
analyses, will help the precise mapping of important genomic regions and location of favored alleles or haplotypes for breeding.
This mini-review examines a genomics approach to defining yield traits in wheat. 相似文献
20.
阶段性干旱及复水对小麦光合特性和产量的影响 总被引:7,自引:0,他引:7
在田间人工遮雨条件下,研究了持续、缓慢的干旱胁迫及复水对小麦旗叶光合特性及产量的影响.结果表明:返青至成熟期充分供水(S0)的小麦旗叶叶绿素含量、叶绿素荧光参数、光合参数和产量较高;返青至成熟期(S3)或开花至成熟期(S2)遭受干旱胁迫的小麦上述光合特征参数与产量显著下降;开花至成熟期复水(S1)的小麦其上述光合参数与S0相比表现出超补偿效应,但产量略低于S0;S1、S2与S3水分利用效率分别为S0的143.2%、86.5%和97.3%;由此得出0~ 40 cm土层平均土壤相对含水量在返青至开花期保持在55%±5%,开花至灌浆期保持在70%±5%,可在获取一定产量的同时高效节水;由于水分和密度在产量表现上存在互作,得出0 ~ 40 cm土层平均土壤相对含水量在返青至开花期保持在55% ±5%,开花至灌浆期保持在70% ±5%,并采取675株·m-2的密度是该地区最佳的水分密度组合. 相似文献