首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Deferiprone (L1) is an effective iron-chelating drug that is widely used for the treatment of iron-overload diseases. It is known that in aqueous solutions Fe2+ and Fe3+ ions can produce hydroxyl radicals via Fenton and photo-Fenton reactions. Although previous studies with Fe2+ have reported ferroxidase activity by L1 followed by the formation of Fe3+ chelate complexes and potential inhibition of Fenton reaction, no detailed data are available on the molecular antioxidant mechanisms involved. Similarly, in vitro studies have also shown that L1–Fe3+ complexes exhibit intense absorption bands up to 800 nm and might be potential sources of phototoxicity. In this study we have applied an EPR spin trapping technique to answer two questions: (1) does L1 inhibit the Fenton reaction catalyzed by Fe2+ and Fe3+ ions and (2) does UV–Vis irradiation of the L1–Fe3+ complex result in the formation of reactive oxygen species. PBN and TMIO spin traps were used for detection of oxygen free radicals, and TEMP was used to trap singlet oxygen if it was formed via energy transfer from L1 in the triplet excited state. It was demonstrated that irradiation of Fe3+ aqua complexes by UV and visible light in the presence of spin traps results in the appearance of an EPR signal of the OH spin adduct (TMIO–OH, a(N)=14.15 G, a(H)=16.25 G; PBN–OH, a(N)=16.0 G, a(H)=2.7 G). The presence of L1 completely inhibited the OH radical production. The mechanism of OH spin adduct formation was confirmed by the detection of methyl radicals in the presence of dimethyl sulfoxide. No formation of singlet oxygen was detected under irradiation of L1 or its iron complexes. Furthermore, the interaction of L1 with Fe2+ ions completely inhibited hydroxyl radical production in the presence of hydrogen peroxide. These findings confirm an antioxidant targeting potential of L1 in diseases related to oxidative damage.  相似文献   

2.
Two novel Rhodamine–pyrazolone‐based colorimetric off–on fluorescent chemosensors for Fe3+ ions were designed and synthesized using pyrazolone as the recognition moiety and Rhodamine 6G as the signalling moiety. The photophysical properties and Fe3+‐binding properties of sensors L1 and L2 in acetonitrile–aqueous solution were also investigated. Both sensors successfully exhibit a remarkably ‘turn‐on’ response, toward Fe3+, which was attributed to 1: 2 complex formation between Fe3+ and L1/L2. The fluorescent and colorimetric response to Fe3+ can be detected by the naked eye, which provides a facile method for the visual detection of Fe3+. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Water‐soluble carbon dots (CDs) were synthesized using a one‐step hydrothermal treatment of chloroplast dispersions extracted from fresh leaves as a green carbon source. The CD solution showed an emission peak centred at 445 nm when excited at 300 nm. The synthesized CDs were uniform and monodispersed with an average size of 5.6 nm. When adding ferric(III) ions (Fe3+) to the solution of the original CDs, the fluorescence intensity decreased significantly. Based on the linear relationship between fluorescence intensity and concentration of Fe3+ ions, an effective method for rapid, sensitive and selective Fe3+ sensing in aqueous solution could be established. Under optimum conditions, the extent of the fluorescence quenching of prepared CDs strongly depended on the Fe3+ ions over a wide concentration range 1.0–100.0 μM with a detection limit (3σ/k) of 0.3 μM. Furthermore, the quantitative determination of Fe3+ ions in environmental water samples was realized.  相似文献   

4.
Fast Kinetics of Fe2+ Oxidation in Packed-Bed Reactors   总被引:6,自引:0,他引:6       下载免费PDF全文
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe2+ oxidized per liter per h (1,400 mmol of Fe2+ oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   

5.
The designing and development of fluorescent chemosensors have recently been intensively explored for sensitive and specific detection of environmentally and biologically relevant metal ions in aqueous solution and living cells. Herein, we report the photophysical results of alanine substituted rhodamine B derivative 3 having specific binding affinity toward Fe3+ with micro molar concentration level. Through fluorescence titration at 599 nm, we were confirmed that ligand 3 exhibited ratiometric fluorescence response with remarkable enhancement in emission intensity by complexation between 3 and Fe3+ while it appeared no emission in case of the competitive ions (Sc3+, Yb3+, In3+, Ce3+, Sm3+, Cr3+, Sn2+, Pb2+, Ni2+, Co2+, Cu2+, Ba2+, Ca2+, Mg2+, Ag+, Cs+, Cu+, K+) in aqueous/methanol (60:40, v/v) at neutral pH. However, the fluorescence as well as colorimetric response of ligand–iron complex solution was quenched by addition of KCN which snatches the Fe3+ from complex and turn off the sensor confirming the recognition process was reversible. Furthermore, bioimaging studies against L-929 cells (mouse fibroblast cells) and BHK-21 (hamster kidney fibroblast), through confocal fluorescence microscopic experiment indicated that ligand showed good permeability and minimum toxicity against the tested cell lines.  相似文献   

6.
Modelling of Fe2 + oxidation by Thiobacillus ferrooxidans   总被引:1,自引:0,他引:1  
Summary The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation. Offprint requests to: R. Kumar  相似文献   

7.
Cobalt nanoparticles (CoNPs) released from hip joint implants are known to have a toxic effect on several organs probably through increasing reactive oxygen species (ROS). Ferrous ion (Fe2+) is well-known to enhance oxidative stress by catalysing the production of ROS. However, in our pilot study, we found that Fe2+ conversely inhibited the ROS production induced by CoNPs. To elucidate the underlying mechanism, the present study treated vascular endothelial HUVEC and HMEC-1 cells with CoNPs alone or in combination with ferrous lactate [Fe(CH3CHOHCOO)2], ferrous succinate [Fe(CH2COO)2], and ferrous chloride (FeCl2). CoNP toxicity was evaluated by measuring cell viability, rate of apoptosis and lactose dehydrogenase (LDH) release, and intracellular ROS levels. Treatment with CoNPs decreased cell viability, LDH release, and ROS production and increased apoptosis. CoNPs increased hypoxia-inducible factor-1α (HIF-1α) protein level and mRNA levels of vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1) downstream of HIF-1α signalling. Silencing HIF-1α attenuated CoNP toxicity, as seen by recovery of cell viability, LDH release, and ROS levels and reduced apoptosis. CoNPs caused a pronounced reduction of Fe2+ in cells, but supplementation with Fe(CH3CHOHCOO)2, Fe(CH2COO)2, and FeCl2 restored Fe2+ levels and inhibited HIF-1α activation. Moreover, all three Fe2+-containing agents conferred protection from CoNPs; Fe(CH3CHOHCOO)2 and Fe(CH2COO)2 more effectively than FeCl2. In summary, the present study revealed that CoNPs exert their toxicity on human vascular endothelial cells by depleting intracellular Fe2+ level, which causes activation of HIF-1α signalling. Supplements of Fe2+, especially in the form of Fe(CH3CHOHCOO)2 and Fe(CH2COO)2, mitigated CoNP toxicity.  相似文献   

8.
We designed new fluorescent chemical sensors for Fe3+ ion detection, by conjugating amino acids as receptors into an anthracene fluorophore. The conjugates were synthesized in solid phase by Fmoc-chemistry. Fluorescence sensors containing Asp (1) and Glu (2) both had exclusive selectivity for Fe3+ in 100% aqueous solution and in a mixed organic–aqueous solvent system. Other metal ions did not interfere with the detection ability of the sensors for Fe3+. The sensors detect Fe3+ ions via a chelation-enhanced fluorescent quenching effect. The binding affinity, reversible monitoring, and pH sensitivity of the sensors were investigated. In addition, detection of fluoride ion among halide ions was done by a chemosensing ensemble method with 1Fe3+ and 2Fe3+ complexes.  相似文献   

9.
Massive pyrite was shown to produce soluble iron, hydrogen, and sulfate ions on exposure to air and water. The rate of this process was directly proportional to the surface area of the mineral; it was unaffected by a drop in the pH and the presence of the ferrous and sulfate ions formed. Cupic ion had no effect but ferric ion accelerated pyrite degradation until all the ferric ion was consumed, in accordance with FeS2 + 2Fe3+ —>‐3Fe2+ + 2S°. Thiobacillus ferrooxidans increased pyrite degradation considerably; the presence of Thiobacillus thiooxidans had no influence on pyrite degradation.  相似文献   

10.
Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH·) scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ ? Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 μg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH· scavenging, ABTS√+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+ ? Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, α-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.  相似文献   

11.
Three Rhodamine B derivatives were synthesized and characterized by ESI‐MS, NMR, HR‐MS and IR. The probes exhibit high selectivity and sensitivity towards Fe3+ over other metal ions in CH3CN–water. Upon the addition of Fe3+, the spirocyclic ring of the probe was opened and a significant enhancement of visible color and fluorescence within the range of 540–700 nm was observed. The colorimetric and fluorescent response to Fe3+ can be conveniently detected even by the naked eye, which provides a facile method for the visual detection of Fe3+. Job's plot, fluorescence titration and MS indicated the formation of 1:2 complexes between the probes and Fe3+. The reversibility of the reaction establishes the potential of these probes as chemosensors for Fe3+ detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The characteristics of nine inducible temperate corynebacteriophages designated αtox+, βtox+, Ptox+, γtox−, πtox+, Ktox−, ρtox−, Ltox+, and δtox+ have been compared. Virion morphology and ability to recombine genetically with the well-studied phage βtox+ have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage βtox+ was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage βtox+, latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as βtox+ were capable of genetic recombination with βtox+, but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with βtox+ resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with βtox+ differed in these characteristics. The phages capable of genetic recombination with βtox+ were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in βtox+ and δtox+, phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin.  相似文献   

13.
Formation of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) in solutions of free 2′-deoxyguanosine (dG) and calf thymus DNA (DNA) was compared for the diffusion-dependent and localised production of oxygen radicals from phosphate-mediated oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+). The oxidation of Fe2+ to Fe3+ was followed at 304 nm at pH 7.2 under aerobic conditions. Given that the concentration of Fe2+ ≥phosphate concentration, the rate of Fe2+ oxidation was significantly higher in DNA-phosphate as compared for the same concentration of inorganic phosphate. Phosphate catalysed oxidation of ferrous ions in solutions of dG or DNA led through the production of reactive oxygen species to the formation of 8-oxo-dG. The yield of 8-oxo-dG in solutions of dG or DNA correlated positively with the inorganic-/DNA-phosphate concentrations as well as with the concentrations of ferrous ions added. The yield of 8-oxo-dG per unit oxidised Fe2+ were similar for dG and DNA; thus, it differed markedly from radiation-induced 8-oxo-dG, where the yield in DNA was several fold higher.For DNA in solution, the localisation of the phosphate ferrous iron complex relative to the target is an important factor for the yield of 8-oxo-dG. This was supported from the observation that the yield of 8-oxo-dG in solutions of dG was significantly increased over that in DNA only when Fe2+ was oxidised in a high excess of inorganic phosphate (50 mM) and from the lower protection of DNA damage by the radical scavenger (hydroxymethyl)aminomethane (Tris)–HCl.  相似文献   

14.
Macrae WD  Yoder OC 《Plant physiology》1987,84(4):1257-1264
Ferric ion reduced the damaging effects of T-toxin, a series of linear β-polyketols produced by the pathogenic fungus Cochliobolus heterostrophus, on leaf mesophyll protoplasts from susceptible T-cytoplasm corn. Of nine metals tested, only ferric and ferrous ions had this effect. Despite the presence of 12 available oxygen atoms in each T-toxin molecule, there was no evidence for the formation of an aqueous Fe2+- or Fe3+-T-toxin complex. The protective effect of iron was eliminated by a molar excess of EDTA. Iron had no effect on the sensitivity of T-cytoplasm mitochondria to T-toxin, even at a 1000-fold molar excess, nor did it protect roots of T-cytoplasm corn seedlings from inhibition by T-toxin. The mechanism by which iron specifically protects protoplasts from T-toxin is not understood, but time lapse experiments suggest that iron acts on some intracellular site to modify T-toxin sensitivity and not on a transport system at the cell surface.  相似文献   

15.
Aerobic granulation is a promising technology for wastewater treatment, but problems regarding its formation and stability need to be solved. Divalent metal ions, especially Ca2+, Mg2+ and Mn2+, have been demonstrated to play an important role in the process of aerobic granulation. Here, we studied whether iron ions can affect aerobic granulation. Granular sludge formed without iron ion addition (<0.02 mg Fe2+ L?1) was fluffy and had a finger-type structure and filamentous out-growth. The addition of iron ions to concentrations of 1 and 10 mg Fe2+ L?1 repressed the finger-type structure and filamentous out-growth. The results show that chemical precipitation in the granules with iron ion addition was higher than that in the granules without ferrous addition. The amount of precipitates was higher inside the granules than outside. This study demonstrates that iron ions (Fe2+/Fe3+) increase the size and stability of aerobic granular sludge but do not affect the granulation time, which is the time that the first granular sludge is observed. The study shows that aerobic granular sludge technology can be confidently applied to actual wastewater containing a high concentration of iron compounds.  相似文献   

16.
Helical stalks (resembling Gallionella ferruginea, Mariprofundus ferrooxydans) and filamentous sheaths (resembling Leptothrix ochracea) of Fe2+-oxidizing bacteria (FeOB) are mineralized by hydrous ferric oxides (HFO). To perform both inter-species and inter-site size comparisons of HFO particles on stalks and sheaths we measured HFO particles in samples of natural bacteriogenic iron oxides (BIOS) from 3 contrasting field sites: the Loihi Seamount (southern Hawaii); Äspö Hard Rock Laboratory (eastern Sweden); and Chalk River Laboratories (northern Canada) representing seafloor saline, underground brackish, and surface freshwater aqueous conditions. Ambient temperatures were in the psychrophilic range and pHs measured for Loihi, CRL, and Äspö were 5.6, 6.9 and 7.4, respectively. Dissolved Fe was lowest for CRL (0.2 mg · L?1) followed by Äspö (1.5 mg · L?1), then Loihi (4.5–14.9 mg · L?1). L. ochraceasheaths appear to have surface properties that restrict HFO particle growth in comparison to G.ferruginea-M.ferrooxydans stalks in the same environment, which we attribute to interfacial surface energy (γ). An inverse relationship between particle size and stalk/sheath length due to restrictions in reactive surface area was also observed, which may provide insight into FeOB survival strategies to alleviate oxidative stress arising from Fe3+ production.  相似文献   

17.
The binding of serotonin to a soluble, high affinity binding protein, present in synaptosomes and associated with serotonergic tracts, has now been studied for the effects of metallic ions and various drugs. At optimal concentration (10-4 M) of Fe2+ the enhancement of binding was close to 20-fold. A much smaller effect was noted with Cu2+. With other ions (Fe3+, Mn2+, Co2+, Ni2+, Cr3+, Mg2+, Ca2+) little or no effect was seen. For the effect with Fe2+. preincubation was required (10 min, 25°C) and concentrations higher than 10-4M were inhibitory. Studies based on equilibrium dialysis show that the effect of Fe2+ was on the affinity of the binding of serotonin to the protein, rather than on the binding capacity. In polydcrylamide gels at pH 8.6 the migratory properties of thc serotonin-protein complex formed in the presence of Fe2+ differ from those of the complex formed without Fe2+. Nucleotides (ATP, GTP, ADP, AMP) inhibited thc binding. The effects of several classes of drugs (inhibitors of biogenic amine storage and uptake, psychotomimetics, MAO) inhibitors and drugs binding to contractile proteins) were also studied. The only effective inhibitors of serotonin binding were reserpine, vinblastine and CZ-74, which caused 50% inhibition at 2 × 10-6 M, 7.5 × 10-6 M and 0.2 × 10-6M respectively.  相似文献   

18.
In the present work, an improved class of protein functionalized fluorescent 2D Ti3C2 MXene quantum dots (MXene QDs) was prepared using a hydrothermal method. Exfoliated 2D Ti3C2 sheets were used as the starting precursor and transport protein bovine serum albumin (BSA) was used to functionalize the MXene QDs. BSA-functionalized MXene QDs exhibited excellent photophysical property and stability at various physiological parameters. High-resolution transmission electron microscopy analysis showed that the BSA@MXene QDs were quasispherical in shape with a size of ~2 nm. The fluorescence intensity of BSA@MXene QDs was selectively quenched in the presence of Fe3+ ions. The mechanism of fluorescence quenching was further substantiated using time-resolved fluorescence and Stern–Volmer analysis. The sensing assay showed a linear response within the concentration range 0–150 μM of Fe3+ ions with excellent limit of detection. BSA@MXene QDs probe showed good selectivity toward ferric ions even in the presence of other potential interferences. The practical applicability of BSA@MXene QDs was further tested in real samples for Fe3+ ion quantification and the sensor had good recovery rates. The cytotoxicity studies of the BSA@MXene QDs toward the human glioblastoma cells revealed that BSA@MXene QDs are biocompatible at lower doses and showed significant cytotoxicity at higher dosages.  相似文献   

19.
The ATP.Mg-dependent type 1 protein phosphatase is inactive as isolated but can be activated in several different ways. In this report, we show that the phosphatase can also be activated by the Fe2+/ascorbate system. Activation of the phosphatase requires both Fe2+ ion and ascorbate and the level of activation is dependent on the concentrations of Fe2+ ion and ascorbate. In the presence of 20 mM ascorbate, the Fe2+ ion concentrations required for half-maximal and maximal activation are about 0.3 and 3mM, respectively. Several common divalent metal ions, including Co2+, Ni2+, Cu2+, Mg2+, and Ca2+ ions, cannot cooperate with ascorbate to activate the phosphatase, and SH-containing reducing agents such as 2-mercaptoethanol and dithiothreitol cannot cooperate with Fe2+ ion to activate the phosphatase, indicating that activation of the phosphatase by the Fe2+/ascorbate system is a specific process. Moreover, H2O2, a strong oxidizer, could significantly diminish the phosphatase activation by the Fe2+/ascorbate system, suggesting that reduction mechanism other than SH-SS interchange is a prerequisite for the Fe2+/ascorbate-mediated phosphatase activation. Taken together, the present study provides initial evidence for a new mode of type 1 protein phosphatase activation mechanism.Abbreviations MAPK mitogen-activated protein kinase - MCO metal ion-catalyzed oxidation - kinase FA the activating factor of ATP.Mg-dependent protein phosphatase - I2 inhibitor-2 - EDTA ethylenediaminetetraacetic acid - MBP myelin basic protein  相似文献   

20.
A novel fluorescent sensor bearing a quinoline and an anisidine moiety has been developed for highly selective detection of Fe3+, which shows photo‐induced electron transfer (PET) behavior induced by Fe3+. Binding of Fe3+ to the sensor induced the electron of C = N group transfer from quinoline to iron, the result exhibits fluorescent enhancement. With the features of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor also applied as a highly selective fluorescent probe in complex samples containing various competitive metal ions. The probe could fulfill various needs in biological and environmental fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号