首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gametocytes of Plasmodium falciparum were produced in continuous cultures but eventually declined in numbers after 3--4 months in vitro. Their development progressed in a consistent pattern, from small rounded, through triangular, to ellipsoidal, and finally after 8 days to crescentic forms. Morphologic maturity occurred at 8--9 days, but the gametocytes would not exflagellate in vitro, even after 14--18 days of development. Thus, current culture methods cannot produce a continuous supply of functional gametes for further studies.  相似文献   

2.
Phosphodiesterase (PDE) and guanylyl cyclase (GC) enzymes are key components of the cGMP signalling pathway and are encoded in the genome of Plasmodium falciparum . Here we investigate the role of specific GC and PDE isoforms in gamete formation – a process that is essential for malaria transmission and occurs in the Anopheles mosquito midgut following feeding on an infected individual. Details of the intracellular signalling events controlling development of the male and female gametes from their precursors (gametocytes) remain sparse in P. falciparum . Previous work involving the addition of pharmacological agents to gametocytes implicated cGMP in exflagellation – the emergence of highly motile, flagellated male gametes from the host red blood cell. In this study we show that decreased GC activity in parasites having undergone disruption of the PfGCβ gene had no significant effect on gametogenesis. By contrast, decreased cGMP-PDE activity during gametocyte development owing to disruption of the PfPDEδ gene, led to a severely reduced ability to undergo gametogenesis. This suggests that the concentration of cGMP must be maintained below a threshold in the developing gametocyte to allow subsequent differentiation to proceed normally. The data indicate that PfPDEδ plays a crucial role in regulating cGMP levels during sexual development.  相似文献   

3.
Differentiation of malaria parasites into sexual forms (gametocytes) in the vertebrate host and their subsequent development into gametes in the mosquito vector are crucial steps in the completion of the parasite's life cycle and transmission of the disease. The molecular mechanisms that regulate the sexual cycle are poorly understood. Although several signal transduction pathways have been implicated, a clear understanding of the pathways involved has yet to emerge. Here, we show that a Plasmodium berghei homologue of Plasmodium falciparum mitogen-activated kinase-2 (Pfmap-2), a gametocyte-specific mitogen-activated protein kinase (MAPK), is required for male gamete formation. Parasites lacking Pbmap-2 are competent for gametocytogenesis, but exflagellation of male gametocytes, the process that leads to male gamete formation, is almost entirely abolished in mutant parasites. Consistent with this result, transmission of mutant parasites to mosquitoes is grossly impaired. This finding identifies a crucial role for a MAPK pathway in malaria transmission.  相似文献   

4.
5.
Two expert research microscopists, each blinded to the other's reports, diagnosed single-species malaria infections in 2,141 adults presenting at outpatient malaria clinics in Tak Province, Thailand, and Iquitos, Peru, in May-August 1998, May-July 1999, and May-June 2001. Plasmodium vivax patients with gametocytemia had higher fever and higher parasitemia than those without gametocytemia; temperature correlated with parasitemia in the patients with gametocytemia. Plasmodium falciparum patients with gametocytemia had lower fever than those without gametocytemia, but similar parasitemia; temperature correlated with parasitemia in the patients without gametocytemia. Hematologic data in Thailand in 2001 showed lower platelet counts in P. vivax patients with gametocytemia than in the P. vivax patients without gametocytemia, whereas P. falciparum patients with gametocytemia had similar platelet counts but lower red blood cell counts, hemoglobin levels, hematocrit levels, and higher lymphocyte counts than patients without gametocytemia.  相似文献   

6.
There is an urgent need for developing alternate strategies to combat Malaria caused by Plasmodium falciparum (P. falciparum) because of growing drug resistance and increased incidents of infection in humans. 3D models of P. falciparum annotated proteins using molecular modeling techniques will enhance our understanding about the mechanism of host parasite interactions for the identification of drug targets and malarial vaccine design. Potential structural templates for P. falciparum annotated proteins were selected from PDB (protein databank) using BLASTP (basic local alignment search tool for proteins). This exercise identified 476 Plasmodium proteins with one or more known structural templates (>or= 40 % identity) for further modeling. The pair-wise sequence alignments generated for protein modeling were manually checked for error. The models were then constructed using MODELLER (a comparative protein modelling program for modelling protein structures) followed by energy minimization in AMBER force field and checked for error using PROCHECK. AVAILABILITY: http://bioinfo.icgeb.res.in/codes/model.html.  相似文献   

7.
We performed reverse-phase thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC) analysis of polyisoprenoids released by sulfonium-salt cleavage with methyl iodide from Plasmodium falciparum proteins labeled with [3H]FPP or [3H]GGPP and showed that a dolichol of 11 isoprene units is bound to 21-28-kDa protein clusters from trophozoite and schizont stages. The dolichol structure was confirmed by electrospray-ionization mass spectrometry analysis. Treatment with protein synthesis inhibitors and RP-HPLC analysis of the proteolytic digestion products from parasite proteins labeled with [35S]cysteine and [3H]FPP showed that the attachment of dolichol to protein is a post-translational event and probably occurs via a covalent bond to cysteine residues.  相似文献   

8.
Mefloquine resistance in Plasmodium falciparum   总被引:2,自引:0,他引:2  
Mefloquine resistance in Plasmodium falciparum, the most dangerous of the four pathogenic malaria parasites of humans, is established in several endemic regions of the world. After a promising start, resistance has developed to disturbing extents in some areas, whereas in many regions it remains an effective drug. In this article, Frank Mockenhaupt reviews the factors that are likely to influence the development of mefloquine resistance, its possible mechanism and its geographical spread.  相似文献   

9.
10.
11.
Malaria kills nearly 1 million people each year, and the protozoan parasite Plasmodium falciparum has become increasingly resistant to current therapies. Isoprenoid synthesis via the methylerythritol phosphate (MEP) pathway represents an attractive target for the development of new antimalarials. The phosphonic acid antibiotic fosmidomycin is a specific inhibitor of isoprenoid synthesis and has been a helpful tool to outline the essential functions of isoprenoid biosynthesis in P. falciparum. Isoprenoids are a large, diverse class of hydrocarbons that function in a variety of essential cellular processes in eukaryotes. In P. falciparum, isoprenoids are used for tRNA isopentenylation and protein prenylation, as well as the synthesis of vitamin E, carotenoids, ubiquinone, and dolichols. Recently, isoprenoid synthesis in P. falciparum has been shown to be regulated by a sugar phosphatase. We outline what is known about isoprenoid function and the regulation of isoprenoid synthesis in P. falciparum, in order to identify valuable directions for future research.  相似文献   

12.
13.
Anamika  Srinivasan N  Krupa A 《Proteins》2005,58(1):180-189
Protein kinases are central to regulation of cellular signaling in the eukaryotes. Well-conserved and lineage-specific protein kinases have previously been identified from various completely sequenced genomes of eukaryotes. The current work describes a genome-wide analysis for protein kinases encoded in the Plasmodium falciparum genome. Using a few different profile matching methods, we have identified 99 protein kinases or related proteins in the parasite genome. We have classified these kinases into subfamilies and analyzed them in the context of noncatalytic domains that occur in these catalytic kinase domain-containing proteins. Compared to most eukaryotic protein kinases, these sequences vary significantly in terms of their lengths, inserts in catalytic domains, and co-occurring domains. Catalytic and noncatalytic domains contain long stretches of repeats of positively charged and other polar amino acids. Various components of the cell cycle, including 4 cyclin-dependent kinase (CDK) homologues, 2 cyclins, 1 CDK regulatory subunit, and 1 kinase-associated phosphatase, are identified. Identification of putative mitogen-activated protein (MAP) Kinase and MAP Kinase Kinase of P. falciparum suggests a new paradigm in the highly conserved signaling pathway of eukaryotes. The calcium-dependent kinase family, well represented in P. falciparum, shows varying domain combinations with EF-hands and pleckstrin homology domains. The analysis reveals a new subfamily of protein kinases having limited sequence similarity with previously known subfamilies. A new transmembrane kinase with 6 membrane-spanning regions is identified. Putative apicoplast targeting sequences have been detected in some of these protein kinases, suggesting their export to the apicoplast.  相似文献   

14.
Discovering novel genes involved in immune evasion and drug resistance in the human malaria parasite, Plasmodium falciparum, is of critical importance to global health. Such knowledge may assist in the development of new effective vaccines and in the appropriate use of antimalarial drugs. By performing a full-genome scan of allelic variability in 14 field and laboratory strains of P. falciparum, we comprehensively identified approximately 500 genes evolving at higher than neutral rates. The majority of the most variable genes have paralogs within the P. falciparum genome and may be subject to a different evolutionary clock than those without. The group of 211 variable genes without paralogs contains most known immunogens and a few drug targets, consistent with the idea that the human immune system and drug use is driving parasite evolution. We also reveal gene-amplification events including one surrounding pfmdr1, the P. falciparum multidrug-resistance gene, and a previously uncharacterized amplification centered around the P. falciparum GTP cyclohydrolase gene, the first enzyme in the folate biosynthesis pathway. Although GTP cyclohydrolase is not the known target of any current drugs, downstream members of the pathway are targeted by several widely used antimalarials. We speculate that an amplification of the GTP cyclohydrolase enzyme in the folate biosynthesis pathway may increase flux through this pathway and facilitate parasite resistance to antifolate drugs.  相似文献   

15.
The molecular machinery for incorporating selenocysteine into proteins is present in both prokaryotes and eukaryotes. Although selenocysteine insertion has been reported in animals, plants, and protozoans, known eukaryotic selenocysteine tRNA sequences and selenocysteine insertion sequences are limited to animals and plants. Here we present clear indications of the presence of selenocysteine-tRNA and a selenocysteine insertion sequence in Plasmodium falciparum. To our knowledge, this is the first report of an identification of protozoan selenocysteine insertion machinery at the sequence level.  相似文献   

16.
Glutaredoxin-like proteins form a new subgroup of glutaredoxins with a serine replacing the second cysteine in the CxxC-motif of the active site. Yeast Grx5 is the only glutaredoxin-like protein studied biochemically so far. We identified and cloned three genes encoding glutaredoxin-like proteins from the malaria parasite Plasmodium falciparum (Pf Glp1, Pf Glp2, and Pf Glp3) containing a conserved cysteine in the CGFS-, CKFS-, and CKYS-motif, respectively. Here, we describe biochemical properties of Pf Glp1 and Pf Glp2. Cys 99, the only cysteine residue in Pf Glp1, has a pK(a) value as low as 5.5 and is able to mediate covalent homodimerization. Monomeric and dimeric Pf Glp1 react with GSSG and GSH, respectively. Pf Glp2 is monomeric and both of its cysteine residues can be glutathionylated. Molecular models reveal a thioredoxin fold for the putative C-terminal domain of Pf Glp1, Pf Glp2, and Pf Glp3, as well as conserved residues presumably required for glutathione binding. However, Pf Glp1 and Pf Glp2 neither possess activity in a classical glutaredoxin assay nor display activity as glutathione peroxidase or glutathione S-transferase. Mutation of Ser 102 in the CGFS-motif of Pf Glp1 to cysteine did not generate glutaredoxin activity either. We conclude that, despite their ability to react with glutathione, glutaredoxin-like proteins are a mechanistically and functionally heterogeneous group with only little similarities to canonical glutaredoxins.  相似文献   

17.
Davidson EA  Gowda DC 《Biochimie》2001,83(7):601-604
The human malaria parasite, Plasmodium falciparum, has as its only glycoconjugate GPI anchors. These structures, present in essentially all parasite surface proteins, are associated with disease pathology. In contrast, the parasite depends for essential recognition events on saccharides associated with host cell glycoproteins and proteoglycans.  相似文献   

18.
Molecular analysis of male gametogenesis in plants.   总被引:17,自引:0,他引:17  
Reproduction in plants rivals the complexity of the process in animals. Recently, several genes that are expressed at specific stages during male gametogenesis have been cloned. These anther-specific genes are providing tools with which to study the cis- and trans-acting factors that regulate gene expression during pollen formation. Sequence analysis of the coding regions of some of these abundantly expressed anther genes is providing unexpected insights into the cell-cell interactions occurring during gamete formation and fertilization.  相似文献   

19.
Callose or beta-1,3-glucan performs multiple functions during male and female gametophyte development. Callose is synthesized by 12 members of the glucan synthase-like (GSL) gene family in Arabidopsis thaliana. To elucidate the biological roles of Arabidopsis GSL family members during sexual development, we initiated a reverse genetic approach with T-DNA insertional mutagenesis lines. We screened T-DNA insertion lines for all members of the GSL gene family and detected homozygous mutant seedlings for all members except GSL10. Three independent alleles in GSL10, gsl10-1, gsl10-3 and gsl10-4 showed distorted segregation (1:1:0) of T-DNA inserts rather than Mendelian segregation (1:2:1). By genetic analysis through reciprocal cross, we determined that gsl10 pollen could not be transmitted to descendent. The mutant pollen of GSL10/gsl10 plants at tetrad and microspore stages were not different from that of wild type, suggesting that GSL10 is not essential for normal microspore growth. Analysis of GSL10/gsl10 hemizygous pollen during development revealed abnormal function in asymmetric microspore division. gsl10 mutant microspores failed to enter into mitosis. Unlike the previously described functions of GSL1, GSL2 and GSL5, GSL10 involves an independent process of pollen development at the mitotic division stage.  相似文献   

20.
We expressed the main surface antigen of Plasmodium falciparum sporozoites, the circumsporozoite protein (CSP), in High Five (Trichoplusia ni) insect cells using the baculovirus system. Significant amounts of the recombinant protein could be obtained, as judged by SDS-PAGE, Western blot, and immunofluorescence analysis. The cellular localization for recombinant CSP was determined by immunofluorescence. The high fluorescence signal of the permeabilized cells, relative to that of fixed nonpermeabilized cells, revealed a clear intracellular localization of this surface antigen. Analysis of possible posttranslational modifications of CSP showed that this recombinant protein is only N-glycosylated in the baculovirus system. Although DNA-sequence analysis revealed a GPI-cleavage/attachment site, no GPI anchor could be demonstrated. These analyses show that the glycosylation status of this recombinant protein may not reflect its native form in P. falciparum. The impact of these findings on vaccine development will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号