共查询到20条相似文献,搜索用时 7 毫秒
1.
Masashi Kawasaki 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2001,187(8):597-604
An African electric fish, Gymnarchus niloticus. ceases its electric organ discharge for a prolonged time in response to external electrical signals. During the cessation of electric organ discharges from the electric organ, a weak sinusoidal signal (approximately 0.1 mV cm(-1)) near the fish's previous discharge frequency was recorded near the body. The oscillatory potentials at all points on the body surface were synchronized and had a complex spatial distribution. The source of the potential was determined to be within the dermal tissue. Electroreceptive central neurons that responded to a moving target near the fish with normal electric organ discharges also responded to the same target when the electric organ discharge was interrupted and the potential from the skin existed. This result suggests that the fish may be able to electrolocate objects without the discharge from the electric organ. 相似文献
2.
3.
Curative interference with signal transduction pathways is a spectacularly successful concept in many domains of modern pharmacology; indeed, the 'wonder drug' Viagra is but a humble inhibitor of a cyclic GMP (cGMP)-specific phosphodiesterase and, thus, interferes with cGMP-signaling in a strategic organ. In fact, about half of the 100 most successful drugs currently on the market act through modulating cellular signal transduction. Despite these encouraging findings, signal transduction pathways as potential drug targets in trypanosomatids have remained largely unexplored. However, what little is known indicates that adenylyl cyclases of trypanosomatids, and probably other enzymes of the cyclic nucleotide signaling pathways, are significantly different from their mammalian counterparts. Here, Christina Naula and Thomas Seebeck summarize what is known about cAMP signal transduction in trypanosomatids. 相似文献
4.
J. G. Dulka L. Maler 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,174(3):331-343
The weakly electric fish, Apteronotus leptorhynchus, produces a wave-like electric organ discharge (EOD) utilized for electrolocation and communication. Both sexes communicate by emitting chirps: transient increases in EOD frequency. In males, chirping behavior and the jamming avoidance response (JAR) can be evoked by an artificial EOD stimulus delivered to the water at frequencies 1–10 Hz below the animal's own EOD. In contrast, females rarely chirp in response to this stimulus even though they show consistent JARs. To investigate whether this behavioral difference is hormone dependent, we implanted females with testosterone (T) and monitored their chirping activity over a 5 week period. Our findings indicate that elevations in blood levels of T cause an enhancement of chirping behavior and a lowering of basal EOD frequency in females. Elevated blood levels of T also appear to modulate the quality of chirps produced by hormone treated females. The effects of T on female chirping behavior and basal EOD frequency appear specific, since the magnitude of the JAR was not affected by the hormonal treatment. These findings suggest that seasonal changes in circulating concentrations of T may regulate behavioral changes in female chirping behavior and basal EOD frequency.Abbreviations DHT
dihydrotestosterone
- E
estradiol
- EOD
elecdric organ discharge
- GSI
gonadal size index
- JAR
jamming avoidance response
- PPn
prepacemaker nucleus
- T
testosterone 相似文献
5.
As pathogenic microorganisms establish an infection, they must be able to sense host-specific signals and respond by elaborating determinants that allow for survival in these hostile conditions. Pathogen cell surface proteins detect these signals and activate signal transduction cascades that ultimately alter gene expression resulting in an adaptive cellular response. Here we review the mechanisms by which a pathogenic fungus uses the highly conserved cAMP signal transduction pathway to regulate cellular differentiation as well as its virulence potential. 相似文献
6.
Weakly electric fish such as Sternopygus macrurus utilize a unique signal production system, the electric organ (EO), to navigate within their environment and to communicate with conspecifics. The electric organ discharge (EOD) generated by the Sternopygus electric organ is quasi-sinusoidal and sexually dimorphic; sexually mature males produce long duration EOD pulses at low frequencies, whereas mature females produce short duration EOD pulses at high frequencies. EOD frequency is set by a medullary pacemaker nucleus, while EOD pulse duration is determined by the kinetics of Na+ and K+ currents in the electric organ. The inactivation of the Na+ current and the activation of the delayed rectifying K+ current of the electric organ covary with EOD frequency such that the kinetics of both currents are faster in fish with high (female) EOD frequency than those with low (male) EOD frequencies. Dihydrotestosterone (DHT) implants masculinize the EOD centrally by decreasing frequency at the pacemaker nucleus (PMN). DHT also acts at the electric organ, broadening the EO pulse, which is at least partly due to a slowing of the inactivation kinetics of the Na+ current. Here, we show that chronic DHT treatment also slows the activation and deactivation kinetics of the electric organ's delayed rectifying K+ current. Thus, androgens coregulate the time-varying kinetics of two distinct ion currents in the EO to shape a sexually dimorphic communication signal. 相似文献
7.
8.
《Animal behaviour》1986,34(2):333-339
We investigated group cohesion in four species of African weakly electric fish (Brienomyrus niger, Gnathonemus petersii, Marcusenius cyprinoides and Pollimyrus isidori). The attraction among members of the same and different species served as the criterion for species recognition. To identify possible mechanisms underlying this ability, conspecifics were allowed to interact through a wide-meshed plastic screen with either a pair of confined conspecifics or a pair from a related species. Members of each of the four test species were optimally attracted to their own kind, but also responded selectively to the presence of the other species. These interspecific interactions ranged from attraction to avoidance. The difference in the fish's preference to aggregate in inter- and intraspecific interactions pointed to species-specific social cues that facilitate group cohesion in mormyrid fish. Since all four species respond to each other's electric organ discharge with changes in their own discharge rate, species recognition cannot be merely a function of electroreceptor characteristics but must involve the integration of electroreceptive and other sensory cues. 相似文献
9.
The induction of cytolytic activity in PC60, a murine T-cell hybridoma, is paralleled by a rise in the level of BLT-esterase (N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl esterase), a serine esterase specific for activated T-cells. Both interleukin-1 (IL-1) and dibutyryl cAMP were albe to increase the esterase activity in a dose-dependent and saturable manner. When added in combination the two activators showed a strong synergism: BLT-esterase levels were up to three times higher than the sum of the levels due to dibutyryl cAMP and IL-1 added separately. Stimulators of the adenylate cyclase, such as forskolin and cholera toxin, induced a similar enhancement of the BLT-esterase response to IL-1. PC60 cells did not produce any cAMP in response to IL-1. When the two stimuli were added sequentially a second effect for cAMP emerged: preincubation with dibutyryl cAMP or activators of the adenylate cyclase for 4 h or longer completely blocked the action of subsequently added IL-1. Taken together, the data demonstrate a dual modulatory role for cAMP in T-lymphocytes activated by IL-1. 相似文献
10.
Leo J. Fleishman Harold H. Zakon William C. Lemon 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1992,170(3):349-356
Summary A classical conditioning paradigm was used to test the ability of Sternopygus macrurus to detect EOD-like stimuli (sine waves) of different frequencies. The behavioral tuning curves were quite close in shape to tuning curves based on single-unit recordings of T units, although the sensitivity at all frequencies was much greater. The behavioral curves showed notches of greatly reduced sensitivity when the test frequency was equal to, or twice the EOD frequency. The EOD of each of the fish was eliminated by lesioning the medullary pacemaker nucleus, and the fish were retested. The resulting tuning curves were nearly the same in shape as those of the EOD-intact individuals, but the PMN-lesioned fish showed an overall reduction of sensitivity of 30 dB. The EOD appears to enhance sensitivity by placing the summed stimulus (test stimulus + fish's EOD) at an amplitude where T units are maximally sensitive to small temporal modulations in the fish's own EOD. Peripheral tuning appears to limit the ability of males to detect the EOD of females, since these are, on average, an octave higher in frequency than the male EOD, while the peak sensitivity of the male occurs 5–10 Hz above its own EOD frequency.Abbreviations
EOD
electric organ discharge
-
PMN
pacemaker nucleus
-
BF
best frequency
-
DF
difference frequency 相似文献
11.
12.
Leo J. Fleishman 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1992,170(3):335-348
There is a sexual dimorphism in the frequency of the quasi-sinusoidal electric organ discharge (EOD) of Sternopygus macrurus, with males, on average, an octave lower. EODs are detected by tuberous electroreceptor organs, which exhibit V-shaped frequency tuning with maximal sensitivity near the fish's own EOD frequency. This would seem to limit the ability of a fish to detect the EODs of opposite-sex conspecifics. However, electroreceptor tuning has always been based on single-frequency stimulation, while actual EOD detection involves the addition of a conspecific EOD to the fish's own. In the present study, recordings were made from single electroreceptive units while the fish were stimulated with pairs of sine waves: one (S1) representing the fish's own EOD added to a second (S2) representing a conspecific EOD. T unit response was easily predicted by assuming that the electroreceptor acts as a linear filter in series with a threshold-sensitive spike initiator. P unit response was more complex, and unexpectedly high sensitivity was found for frequencies of S2 well displaced from the fish's EOD frequency. For both P and T units, detection thresholds for S2 were much lower when added to S1, than when presented alone. 相似文献
13.
A. A. Caputi R. Budelli 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2006,192(6):587-600
Different species have developed different solutions to the problem of constructing a representation of the environment from sensory images projected onto sensory surfaces. Comprehension of how these images are formed is an essential first step in understanding the representation of external reality by a given sensory system. Modeling of the electrical sensory images of objects began with the discovery of electroreception and continues to provide general insights into the mechanisms of imaging. Progress in electric image research has made it possible to establish the physical basis of electric imaging, as well as methods to accurately predict the electric images of objects alone and as a part of a natural electric scene. In this review, we show the following. (1) The internal low resistance of the fish’s body shapes the image in two different ways: by funneling the current generated by the electric organ to the sensory surface, it increases the fields rostrally, thus enhancing the perturbation produced by nearby objects; and by increasing the projected image. (2) The electric fish’s self-generated currents are modified by capacitive objects in a distinctive manner. These modulations can be detected by different receptor types, yielding the possibility of “electric color.” (3) The effects of different objects in a scene interact with each other, generating an image that is different from the simple addition of the images of individual objects, thus causing strong contextual effects. 相似文献
14.
It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background. 相似文献
15.
Peter Moller 《Journal of Physiology》2002,96(5-6):547-556
The ability to integrate multisensory information is a fundamental characteristic of the brain serving to enhance the detection and identification of external stimuli. Weakly electric fish employ multiple senses in their interactions with one another and with their inanimate environment (electric, visual, acoustic, mechanical, chemical, thermal, and hydrostatic pressure) and also generate signals using some of the same stimulus energies (electric, acoustic, visual, mechanical). A brief overview provides background on the sensory and motor channels available to the fish followed by an examination of how weakly electric fish 'benefit' from integrating various stimulus modalities that assist in prey detection, schooling, foraging, courtship, and object location. Depending on environmental conditions, multiple sensory inputs can act synergistically and improve the task at hand, can be redundant or contradictory, and can substitute for one another. Over time, in repeated encounters with familiar surrounds, loss of one modality can be compensated for through learning. Studies of neuronal substrates and an understanding of the computational algorithms that underlie multisensory integration ought to expose the physiological corollaries to widely published concepts such as internal representation, sensory expectation, sensory generalization, and sensory transfer. 相似文献
16.
17.
18.
19.
Electroreceptive fish detect nearby objects by processing the information contained in the pattern of electric currents through the skin. The distribution of local transepidermal voltage or current density on the sensory surface of the fish's skin is the electric image of the surrounding environment. This article reports a model study of the quantitative effect of the conductance of the internal tissues and the skin on electric image generation in Gnathonemus petersii (Günther 1862). Using realistic modelling, we calculated the electric image of a metal object on a simulated fish having different combinations of internal tissues and skin conductances. An object perturbs an electric field as if it were a distribution of electric sources. The equivalent distribution of electric sources is referred to as an object's imprimence. The high conductivity of the fish body lowers the load resistance of a given object's imprimence, increasing the electric image. It also funnels the current generated by the electric organ in such a way that the field and the imprimence of objects in the vicinity of the rostral electric fovea are enhanced. Regarding skin conductance, our results show that the actual value is in the optimal range for transcutaneous voltage modulation by nearby objects. This result suggests that "voltage" is the answer to the long-standing question as to whether current or voltage is the effective stimulus for electroreceptors. Our analysis shows that the fish body should be conceived as an object that interacts with nearby objects, conditioning the electric image. The concept of imprimence can be extended to other sensory systems, facilitating the identification of features common to different perceptual systems. 相似文献