首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Improved and modular tools are needed for the neuroanatomical dissection of CNS axonal tracts, and to study the cell-intrinsic and cell-extrinsic cues that govern their assembly and plasticity. Here we describe a general purpose transgenic tracer that can be used to visualize axonal tracts and synaptic terminals in any region of the embryonic neural tube or postnatal CNS, on any wild type or mutant genetic background. The construct permits CRE-inducible expression of a dicistronic axonal marker encoding two surface reporter proteins: a farnesylated GFP and the human Placental Alkaline Phosphatase (PLAP). Both proteins localize alongside the neuronal surface, permitting the concomitant detection of cell body, neurites, and presynaptic and postsynaptic sites in the same neuron. This provides a CRE-inducible dual system for imaging neural circuits in vivo, and to study their assembly and remodeling in cultured neurons, neural stem cells, and tissue explants derived from the reporter line. Unlike existing lines, this reporter does not encode a ubiquitously expressed, floxable LacZ gene, permitting the simultaneous analysis of beta galactosidase activity in mutant lines.  相似文献   

2.
Previous studies have shown that Notch signaling not only regulates the number of early differentiating neurons, but also maintains proliferating neural precursors in the neural tube. Although it is well known that Notch signaling is closely related to the differentiation of adult neural stem cells, none of transgenic zebrafish provides a tool to figure out the relationship between Notch signaling and the differentiation of neural precursors. The goal of this study was to characterize Her4-positive cells by comparing the expression of a fluorescent Her4 reporter in Tg[her4-dRFP] animals with a GFAP reporter in Tg[gfap-GFP] adult zebrafish. BrdU incorporation indicated that dRFP-positive cells were proliferating and a double labeling assay revealed that a significant fraction of the Her4-dRFP positive population was also GFAP-GFP positive. Our observations suggest that a reporter line with Notch-dependent gene expression can provide a tool to examine proliferating neural precursors and/or neuronal/glial precursors in the development of the adult nervous system to examine the model in which Notch signaling maintains proliferating neural precursors in the neural tube.  相似文献   

3.
4.
5.
6.
Zebrafish and medaka have become popular models for studying skeletal development because of high fecundity, shorter generation period, and transparency of fish embryo. The first step to study skeletal development is visualizing bone and cartilage. Live animal staining with fluorescent calcein have several advantages over the standard skeletal staining protocol by using alizarin red and alcian blue for bone and cartilage. However, there is no detailed study examining skeletal development of live marine fish larvae by calcein staining. Here we applied calcein staining to examine skeletal development in red sea bream larvae. In addition, green fluorescent protein (GFP) reporter zebrafish was employed to trace lineage analysis of intervertebral disk cells in live fish larvae. Calcein staining of red sea bream larvae successfully visualized development of craniofacial skeletons as well as urinary calculus. Histochemical detection of alkaline phosphatase (ALP) activity revealed that abnormal segmentation of notochord induced by RA during vertebral development in zebrafish. Immunohistochemistry clearly revealed that GFP‐positive cells in intervertebral space was nucleus polposus like cell in twhh‐GFP transgenic zebrafish. It was demonstrated usefulness of calcein and ALP staining and twhh‐GFP transgenic zebrafish for studying skeletal development in live fish larvae.  相似文献   

7.
Green fluorescent protein (GFP) transgenic fish and their applications   总被引:11,自引:0,他引:11  
Gong Z  Ju B  Wan H 《Genetica》2001,111(1-3):213-225
The coupling of the GFP reporter system with the optical clarity of embryogenesis in model fish such as zebrafish and medaka is beginning to change the picture of transgenic fish study. Since the advent of first GFP transgenic fish in 1995, GFP transgenic fish technology have been quickly employed in many areas such as analyses of gene expression patterns and tissue/organ development, dissection of promoters/enhancers, cell lineage and axonal pathfinding, cellular localization of protein products, chimeric embryo and nuclear transplantation, cell sorting, etc. The GFP transgenic fish also have the potentials in analysis of upstream regulatory factors, mutagenesis screening and characterization, and promoter/enhancer trap. Our own studies indicate that GFP transgenic fish may become a new source of novel variety of ornamental fish. Efforts are also being made in our laboratory to turn GFP transgenic fish into biomonitoring organisms for surveillance of environmental pollution.  相似文献   

8.
9.
10.
Vertebrate palatogenesis is a highly choreographed and complex developmental process, which involves migration of cranial neural crest (CNC) cells, convergence and extension of facial prominences, and maturation of the craniofacial skeleton. To study the contribution of the cranial neural crest to specific regions of the zebrafish palate a sox10: kaede transgenic zebrafish line was generated. Sox10 provides lineage restriction of the kaede reporter protein to the neural crest, thereby making the cell labeling a more precise process than traditional dye or reporter mRNA injection. Kaede is a photo-convertible protein that turns from green to red after photo activation and makes it possible to follow cells precisely. The sox10: kaede transgenic line was used to perform lineage analysis to delineate CNC cell populations that give rise to maxillary versus mandibular elements and illustrate homology of facial prominences to amniotes. This protocol describes the steps to generate a live time-lapse video of a sox10: kaede zebrafish embryo. Development of the ethmoid plate will serve as a practical example. This protocol can be applied to making a time-lapse confocal recording of any kaede or similar photoconvertible reporter protein in transgenic zebrafish. Furthermore, it can be used to capture not only normal, but also abnormal development of craniofacial structures in the zebrafish mutants.  相似文献   

11.
12.
In vertebrates, pigment cells account for a small percentage of the total cell population and they intermingle with other cell types. This makes it difficult to isolate them for analyzes of their functions in the context of development. To alleviate such difficulty, we generated two stable transgenic zebrafish lines (pt101 and pt102) that express green fluorescent protein (GFP) in melanophores under the control of the 1 kb Fugu tyrp1 promoter. In pt101, GFP is expressed in both retinal pigment epithelium (RPE) cells and the neural crest‐derived melanophores (NCDM), whereas in pt102, GFP is predominately expressed in the NCDM. Our results indicate that the Fugu tyrp1 promoter can direct transgene expression in a cell‐type‐specific manner in zebrafish. In addition, our findings provide evidence supporting differential regulations of melanin‐synthesizing genes in RPE cells and the NCDM in zebrafish. Utilizing the varying GFP expression levels in these fish, we have isolated melanophores via flow cytometry and revealed the capability of sorting the NCDM from RPE cells as well. Thus, these transgenic lines are useful tools to study melanophores in zebrafish.  相似文献   

13.
14.
15.
In vertebrates, pigment cells account for a small percentage of the total cell population and they intermingle with other cell types. This makes it difficult to isolate them for analyzes of their functions in the context of development. To alleviate such difficulty, we generated two stable transgenic zebrafish lines (pt101 and pt102) that express green fluorescent protein (GFP) in melanophores under the control of the 1 kb Fugu tyrp1 promoter. In pt101, GFP is expressed in both retinal pigment epithelium (RPE) cells and the neural crest-derived melanophores (NCDM), whereas in pt102, GFP is predominately expressed in the NCDM. Our results indicate that the Fugu tyrp1 promoter can direct transgene expression in a cell-type-specific manner in zebrafish. In addition, our findings provide evidence supporting differential regulations of melanin-synthesizing genes in RPE cells and the NCDM in zebrafish. Utilizing the varying GFP expression levels in these fish, we have isolated melanophores via flow cytometry and revealed the capability of sorting the NCDM from RPE cells as well. Thus, these transgenic lines are useful tools to study melanophores in zebrafish.  相似文献   

16.
17.
Zebrafish retina contains five morphologically distinct classes of photoreceptors, each expressing a distinct type of opsin gene. Molecular mechanisms underlying specification of opsin expression and differentiation among the cell types are largely unknown. This is partly because mutants affected with expression of a particular class of opsin gene are difficult to find. In this study we established the transgenic lines of zebrafish carrying green fluorescent protein (GFP) gene under the 1.1-kb and 3.7-kb upstream regions of the rod-opsin gene. In transgenic fish, GFP expression initiated and proceeded in the same spatiotemporal pattern with rod-opsin gene. The retinal section from adult transgenic fish showed GFP expression throughout the rod cell layer. These results indicate that the proximal 1.1-kb region is sufficient to drive gene expression in all rod photoreceptor cells. These transgenic fish should facilitate screening of mutants affected specifically with rod-opsin expression or rod cell development by visualization of rod cells by GFP.  相似文献   

18.
In this study, by using two transgenic models, we address the general topic of the significance of axonal glycoproteins regulated expression in nervous tissue maturation. The immunoglobulin superfamily components F3/Contactin (F3) and TAG-1 are used as the molecular models in this respect. First, a minigene including the relevant regulatory sequences of the F3 gene, deduced by a previous in vitro study, has been fused to an EGFP (Enhanced Green Fluorescent Protein) reporter and expressed in transgenic mice, which provided information about the profile of F3 gene developmental activation. In a complementary model, transgenic mice have been generated which express the F3 cDNA under control of a selected regulatory region from the TAG-1 gene. While leading to ectopic expression of F3, this perturbed neuronal precursor proliferation and differentiation. The arising effects were even stronger than those coming from the overall suppression of the F3 or, respectively, TAG-1 genes, thus supporting the hypothesis that the mechanisms underlying axonal glycoprotein regulated expression are themselves endowed with a key significance in neural development.  相似文献   

19.
Accurate lineage tracing is crucial to understanding of developmental and stem cell biology, but is particularly challenging for transient and highly dispersive cell‐types like the neural crest (NC). The authors report in this article a new zebrafish transgenic line Tg(‐4725sox10:Cre)ba74. This line expresses Cre under the control of a well‐characterized portion of the sox10 promoter and, by crossing to a floxed‐reporter line, the authors show in this article that expression in this line is consistent with those described for GFP reporter lines using the same promoter. Reporter expression is readily detected in patterns consistent with the early expression domains. Thus, the authors see all major groups (pigment, neural, and skeletal) of NC‐derived cell‐types, as well as cell‐types derived from the known non‐NC sites of sox10 expression, including otic epithelium and oligodendrocytes. This line provides an invaluable tool for the further study of zebrafish NC development and NC‐derived stem cells as well as that of the otic vesicle and oligodendrocytes. genesis 50:750–757, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号