首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By convention, the term "mitochondrial diseases" refers to disorders of the mitochondrial respiratory chain, which is the only metabolic pathway in the cell that is under the dual control of the mitochondrial genome (mtDNA) and the nuclear genome (nDNA). Therefore, a genetic classification of the mitochondrial diseases distinguishes disorders due to mutations in mtDNA, which are governed by the relatively lax rules of mitochondrial genetics, and disorders due to mutations in nDNA, which are governed by the stricter rules of mendelian genetics. Mutations in mtDNA can be divided into those that impair mitochondrial protein synthesis in toto and those that affect any one of the 13 respiratory chain subunits encoded by mtDNA. Essential clinical features for each group of diseases are reviewed. Disorders due to mutations in nDNA are more abundant not only because most respiratory chain subunits are nucleus-encoded but also because correct assembly and functioning of the respiratory chain require numerous steps, all of which are under the control of nDNA. These steps (and related diseases) include: (i) synthesis of assembly proteins; (ii) intergenomic signaling; (iii) mitochondrial importation of nDNA-encoded proteins; (iv) synthesis of inner mitochondrial membrane phospholipids; (v) mitochondrial motility and fission.  相似文献   

2.
3.
Although Leigh syndrome (LS) is a well characterized clinical mitochondrial disorder; the exact mutation is not found in all cases and it is not clear whether matrilineal background has contributed to this disease. To address this issue, we extensively studied and compared the haplogroup composition of a sample of 171 Chinese LS patients with that of 1597 controls. Our results show that haplogroup Y may increase the risk of LS in Chinese by 2.867 fold (95% CI = 1.135–7.240, P = 0.020). Haplogroup B5 has also this trend (1.737 fold, 95% CI = 0.961–3.139), but with a borderline P-value (P = 0.065). Both haplogroups belong to macro-haplogroup N and share a common reverse mutation on nucleotide position 10398 (A10398G). In fact, the combined haplogroup N with 10398G is also associated with an increased risk for LS (OR = 1.882, 95% CI = 1.134–3.124, P = 0.013).  相似文献   

4.
Increasing experimental evidence supports a connection between inflammation and mitochondrial dysfunction. Both acute and chronic inflammatory diseases course with elevated free radicals production that may affect mitochondrial proteins, lipids, and mtDNA. The subsequent mitochondrial impairment produces more reactive oxygen species that further reduce the ATP generation, increasing the probability of cell death. Mitochondrial impairment in now considered a key factor in inflammation because (1) there are specific pathologies directly derived from mtDNA mutations, causing chronic inflammatory diseases such as neuromuscular and neurodegenerative disorders, (2) there are neurodegenerative, metabolic, and other inflammatory diseases in which their progression is accompanied by mitochondrial dysfunction, which is directly involved in the cell death. Recently, a direct implication of mitochondrial reactive oxygen species and, particularly, mtDNA in the innate immune response has been reported. Thus, the mitochondria should be considered targets for new therapies related to the treatment of acute and chronic inflammatory diseases, including the auto-inflammatory ones.  相似文献   

5.
6.
Mutations in LRPPRC are responsible for the French Canadian variant of Leigh Syndrome (LSFC), a severe disorder characterized biochemically by a tissue-specific deficiency of cytochrome c oxidase (COX) and clinically by the occurrence of severe and deadly acidotic crises. Factors that precipitate these crises remain unclear. To better understand the physiopathology and identify potential treatments, we performed a comprehensive analysis of mitochondrial function in LSFC and control fibroblasts. Furthermore, we have used this cell-based model to screen for conditions that promote premature cell death in LSFC cells and test the protective effect of ten interventions targeting well-defined aspects of mitochondrial function. We show that, despite maintaining normal ATP levels, LSFC fibroblasts present several mitochondrial functional abnormalities under normal baseline conditions, which likely impair their capacity to respond to stress. This includes mitochondrial network fragmentation, impaired oxidative phosphorylation capacity, lower membrane potential, increased sensitivity to Ca2+-induced permeability transition, but no changes in reactive oxygen species production. We also show that LSFC fibroblasts display enhanced susceptibility to cell death when exposed to palmitate, an effect that is potentiated by high lactate, while high glucose or acidosis alone or in combination were neutral. Furthermore, we demonstrate that compounds that are known to promote flux through the electron transport chain independent of phosphorylation (methylene blue, dinitrophenol), or modulate fatty acid (L-carnitine) or Krebs cycle metabolism (propionate) are protective, while antioxidants (idebenone, N-acetyl cysteine, resveratrol) exacerbate palmitate plus lactate-induced cell death. Collectively, beyond highlighting multiple alterations in mitochondrial function and increased susceptibility to nutrient-induced cytotoxicity in LSFC fibroblasts, these results raise questions about the nature of the diets, particularly excess fat intake, as well as on the use of antioxidants in patients with LSFC and, possibly, other COX defects.  相似文献   

7.
Mitochondria are essential organelles within the cell where most of the energy production occurs by the oxidative phosphorylation system (OXPHOS). Critical components of the OXPHOS are encoded by the mitochondrial DNA (mtDNA) and therefore, mutations involving this genome can be deleterious to the cell. Post-mitotic tissues, such as muscle and brain, are most sensitive to mtDNA changes, due to their high energy requirements and non-proliferative status. It has been proposed that mtDNA biological features and location make it vulnerable to mutations, which accumulate over time. However, although the role of mtDNA damage has been conclusively connected to neuronal impairment in mitochondrial diseases, its role in age-related neurodegenerative diseases remains speculative. Here we review the pathophysiology of mtDNA mutations leading to neurodegeneration and discuss the insights obtained by studying mouse models of mtDNA dysfunction. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

8.
Today there are described more than 400 point mutations and more than hundred of structural rearrangements of mitochondrial DNA associated with characteristic neuromuscular and other mitochondrial syndromes, from lethal in the neonatal period of life to the disease with late onset. The defects of oxidative phosphorylation are the main reasons of mitochondrial disease development. Phenotypic diversity and phenomenon of heteroplasmy are the hallmark of mitochondrial human diseases. It is necessary to assess the amount of mutant mtDNA accurately, since the level of heteroplasmy largely determines the phenotypic manifestation. In spite of tremendous progress in mitochondrial biology since the cause-and-effect relations between mtDNA mutation and the human diseases was established over 20 years ago, there is still no cure for mitochondrial diseases.  相似文献   

9.
Mitochondria are highly specialized in function, but mitochondrial and, therefore, cellular integrity is maintained through their dynamic nature. Through the frequent processes of fusion and fission, mitochondria continuously change in shape and adjust function to meet cellular requirements. Abnormalities in fusion/fission dynamics generate cellular dysfunction that may lead to diseases. Mutations in the genes encoding mitochondrial fusion/fission proteins, such as MFN2 and OPA1, have been associated with an increasing number of genetic disorders, including Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy. In this review, we address the mitochondrial dynamic changes in several important genetic diseases, which will bring the new insight of clinical relevance of mitochondrial genetics.  相似文献   

10.
Mitochondrial diseases mimicking neurotransmitter defects   总被引:1,自引:0,他引:1  
OBJECTIVES: Mitochondrial disorders are clinically heterogeneous. We aimed to describe 5 patients who presented with a clinical picture suggestive of primary neurotransmitter defects but who finally fulfilled diagnostic criteria for mitochondrial disease. METHODS: We report detailed clinical features, brain magnetic resonance findings and biochemical studies, including cerebrospinal fluid (CSF) biogenic amine and pterin measurements, respiratory chain enzyme activity, and molecular studies. RESULTS: The 5 patients had a very early onset age (from 1 day to 3 months) and a severe clinical course. They all showed a clinical picture suggestive of infantile hypokinetic-rigid syndrome (hypokinesia, hypomimia, slowness of reactions, tremor), other abnormal movements (myoclonus, dystonia), axial hypotonia, limb hypertonia, feeding difficulties, and psychomotor delay. Abnormal CSF findings among the 4 patients without treatment included low levels of homovanillic acid (HVA) in 3 patients, with associated low 5-hydroxyindoleacetic acid (5-HIAA) concentrations in two of them. Absent or mild and transitory improvement was observed after treatment with L-dopa. A diagnosis of mitochondrial disorder was finally made due to the appearance of hyperlactacidemia, diverse respiratory chain defects, and multisystemic involvement. CONCLUSIONS: Secondary neurotransmitter disturbances may occur in mitochondrial diseases. Differential diagnosis of hypokinetic-rigid syndrome presenting in infancy could also include paediatric mitochondrial disorders.  相似文献   

11.
Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases.  相似文献   

12.
Mitochondria exist in networks that are continuously remodeled through fusion and fission. Why do individual mitochondria in living cells fuse and divide continuously? Protein machinery and molecular mechanism for the dynamic nature of mitochondria have been almost clarified. However, the biological significance of the mitochondrial fusion and fission events has been poorly understood, although there is a possibility that mitochondrial fusion and fission are concerned with quality controls of mitochondria. trans-mitochondrial cell and mouse models possessing heteroplasmic populations of mitochondrial DNA (mtDNA) haplotypes are quite efficient for answering this question, and one of the answers is “mitochondrial functional complementation” that is able to regulate respiratory function of individual mitochondria according to “one for all, all for one” principle. In this review, we summarize the observations about mitochondrial functional complementation in mammals and discuss its biological significance in pathogeneses of mtDNA-based diseases.  相似文献   

13.
14.
Mitochondrial encephalomyopathies: Clinical and molecular analysis   总被引:10,自引:0,他引:10  
The classification of mitochondrial encephalomyopathies relied upon clinical, biochemical, and histological features until the discovery of mitochondrial DNA defects in 1988. Since then, an outburst of molecular genetic information has aided our understanding of the pathogenesis and the classification of these heterogeneous disorders. Novel concepts of maternal inheritance, mitochondrial DNA (mtDNA) heteroplasmy, tissue distribution, and threshold have explained many of the clinical characteristics. The discovery of point mutations, large-scale mtDNA deletions, duplications, and autosomally inherited disorders with multiple mtDNA deletions have revealed new genetic phenomena. Despite our rapidly expanding understanding of the molecular genetic defects, many questions remain to be explored to fill the gap in our knowledge of the relationship between genotype and clinical phenotype.  相似文献   

15.
朊病毒病是一类具有传染性、不可逆且致命的神经退行性疾病,其致病机制为体内正常编码的细胞型朊蛋白(cellular prion protein,PrP~C)构象发生变化,形成了具有感染性的异常痒病型朊病毒(scrapie prion protein,PrP~(Sc)),但具体机制不清楚,目前为止尚无有效治疗方法。微小RNA(microRNA,miRNA)可在转录水平调控细胞蛋白表达,对神经系统发育及功能起重要作用。近年来,对一些特定miRNA在朊病毒病中相应调控机制、自发免疫、炎症信号转导及靶基因预测方面的研究可为治疗朊病毒病提供新的角度。本文就miRNA在朊病毒病发生中的相关研究进展进行综述,并详细探讨其中研究较为深入的miRNA。  相似文献   

16.
A number of studies suggest that mitochondrial dysfunction plays a role in the pathogenesis of asthma. To shed light for the first time on the role of the mitochondrial genome in the etiology of asthma we analyzed the mitochondrial tRNA genes and part of their flanking regions in patients with asthma compared with a set of healthy controls. We found a total of 10 mutations in 56 out of 76 asthmatic patients. Four of these mutations were not found in the control group, five were observed at a significantly lower frequency in controls, but none of the combinations of mutations detected in asthma patients was observed in the controls. Furthermore, we observed that 27.6% of the asthma patients (vs. 4% of the controls) belonged to the haplogroup U (Fisher test P = 0.00) and a positive significant correlation was found between the occurrence of the haplogroup U and the severity of the disease (Fisher test P = 0.02). Whereas further studies in larger cohorts are needed to confirm these observations we suggest that the mitochondrial genetic background plays a key role in asthma development.  相似文献   

17.
Large-scale deletions and tRNA point mutations in mitochondrial DNA (mtDNA) are associated with a variety of different mitochondrial encephalomyopathies. Skeletal muscle in these patients shows a typical pathology, characterized by the focal accumulation of large numbers of morphologically and biochemically abnormal mitochondria (ragged-red fibers). Both mtDNA deletions and tRNA point mutations impair mitochondrial translation and produce deficiencies in oxidative phosphorylation. However, mutant and wild-type mtDNAs co-exist (mtDNA heteroplasmy) and the translation defect is not expressed until the ratio of mutant: wild-type mtDNAs exceeds a specific threshold. Below the threshold the phenotype can be rescued by intramitochondrial genetic complementation. The mosaic expression of the skeletal muscle pathology is thus determined by both the cellular and organellar distribution of mtDNA mutants.  相似文献   

18.
Dysfunctions of the F(1)F(o)-ATPase complex cause severe mitochondrial diseases affecting primarily the paediatric population. While in the maternally inherited ATPase defects due to mtDNA mutations in the ATP6 gene the enzyme is structurally and functionally modified, in ATPase defects of nuclear origin mitochondria contain a decreased amount of otherwise normal enzyme. In this case biosynthesis of ATPase is down-regulated due to a block at the early stage of enzyme assembly-formation of the F(1) catalytic part. The pathogenetic mechanism implicates dysfunction of Atp12 or other F(1)-specific assembly factors. For cellular energetics, however, the negative consequences may be quite similar irrespective of whether the ATPase dysfunction is of mitochondrial or nuclear origin.  相似文献   

19.
Mitochondrial diseases: gene mapping and gene therapy   总被引:6,自引:0,他引:6  
E S Lander  H Lodish 《Cell》1990,61(6):925-926
  相似文献   

20.
ATP synthase is a key enzyme of mitochondrial energy conversion. In mammals, it produces most of cellular ATP. Alteration of ATP synthase biogenesis may cause two types of isolated defects: qualitative when the enzyme is structurally modified and does not function properly, and quantitative when it is present in insufficient amounts. In both cases the cellular energy provision is impaired, and diminished use of mitochondrial DeltamuH+ promotes ROS production by the mitochondrial respiratory chain. The primary genetic defects have so far been localized in mtDNA ATP6 gene and nuclear ATP12 gene, however, involvement of other nuclear genes is highly probable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号