首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation and mutation to thioguanine-resistance of V79 hamster cells were studied after irradiation with accelerated helium, boron or nitrogen ions covering a range of linear energy transfer from 28 to 470 keV micrometers-1. For all radiation qualities a dose-dependent increase in mutant frequency was found for doses giving surviving fractions greater than about 0.20. The effectiveness per unit dose for both inactivation and mutation induction increased with the linear energy transfer of the radiation to a maximum in the range 90-200 keV micrometer-1. However, the maximum mutagenic effectiveness relative to gamma-rays was about two or more times that for inactivation. It is suggested that a proportion of the radiation-induced mutants suffer extensive genetic damage, and that some forms of this damage may be induced with high efficiency by radiations of high linear energy transfer.  相似文献   

2.
Cytotoxic and mutagenic effects of high-LET charged iron (56Fe) particles were measured quantitatively using primary cultures of human skin fibroblasts. Argon and lanthanum particles and gamma rays were used in comparative studies. The span of LETs selected was from 150 keV/microns (330 MeV/u) to 920 keV/microns (600 MeV/u). Mutations were scored at the hypoxanthine guanine phosphoribosyl transferase (HPRT) locus using 6-thio-guanine (6-TG) for selection. Exposure to these high-LET charged particles resulted in exponential survival curves. Mutation induction, however, was fitted by the linear model. The relative biological effectiveness (RBE) for cell killing ranged from 3.7 to 1.3, while that for mutation induction ranged from 5.7 to 0.5. Both the RBE for cell killing and the RBE for mutagenesis decreased with increasing LET over the range of 1.50 to 920 keV/microns. The inactivation cross section (sigma i) and the action cross section for mutation induction (sigma m) ranged from 32.9 to 92.0 microns2 and 1.45 to 5.56 X 10(-3) microns2; the maximum values were obtained by 56Fe with an LET of 200 keV/microns. The mutagenicity (sigma m/sigma i) ranged from 2.05 to 7.99 X 10(-5) with an inverse relationship to LET.  相似文献   

3.
This paper, which is the first of four covering the inactivation of clonogenic capacity and induction of mutation in cultured mammalian cells, deals briefly with the general aims of the work and describes the irradiation techniques used. Human diploid fibroblasts and V79 Chinese hamster cells were irradiated as monolayers with ions of helium, boron or nitrogen at LET's in the range 20 to 479 keV micrometer-1 in H2O. The physical aspects of the irradiation including measurement of ion energies, dosimetry and uniformity of dose and also the methods of handling large numbers of samples are described in detail. Subsequent papers will present the biological methods and results and a biophysical analysis of the data.  相似文献   

4.
The contribution of indirect action mediated by OH radicals to cell inactivation by ionizing radiations was evaluated for photons over the energy range from 12.4 keV to 1.25 MeV and for heavy ions over the linear energy transfer (LET) range from 20 keV/microm to 440 keV/microm by applying competition kinetics analysis using the OH radical scavenger DMSO. The maximum level of protection provided by DMSO (the protectable fraction) decreased with decreasing photon energy down to 63% at 12.4 keV. For heavy ions, a protectable fraction of 65% was found for an LET of around 200 keV/microm; above that LET, the value stayed the same. The reaction rate of OH radicals with intracellular molecules responsible for cell inactivation was nearly constant for photon inactivation, while for the heavy ions, the rate increased with increasing LET, suggesting a reaction with the densely produced OH radicals by high-LET ions. Using the protectable fraction, the cell killing was separated into two components, one due to indirect action and the other due to direct action. The inactivation efficiency for indirect action was greater than that for direct action over the photon energy range and the ion LET range tested. A significant contribution of direct action was also found for the increased RBE in the low photon energy region.  相似文献   

5.
Induction of DNA double-strand breaks in diploid wild-type yeast cells, and inactivation of diploid mutant cells (rad54-3) unable to repair DNA double-strand breaks, were studied with aluminium K (1.5 keV) and carbon K (0.278 keV) characteristic X-rays. The induction of DNA double-strand breaks was found to increase linearly with absorbed dose for both characteristic X-rays. Carbon K X-rays were more effective than aluminium K X-rays. Relative to 60Co gamma-rays the r.b.e.-values for the induction of DNA double-strand breaks were found to be 3.8 and 2.2 for carbon K and aluminium K X-rays respectively. The survival curves of the rad54-3 mutant cells were exponential for both ultrasoft X-rays. For inactivation of rad54-3 mutant cells, the r.b.e.-values relative to 60Co gamma-rays were 2.6 and 2.4 for carbon K and aluminium K X-rays, respectively. The DNA double-strand break data obtained with aluminium K and carbon K X-rays are in agreement with the data obtained for gene mutation, chromosome aberrations and inactivation of mammalian cells, suggesting that DNA double-strand breaks are the possible molecular lesions leading to these effects.  相似文献   

6.
The induction of inactivation and mutation to thioguanine-resistance of two types of cultured mammalian cells, V79 Chinese hamster and HF19 human diploid, was studied after irradiation with aluminium K characteristic ultrasoft X-rays, helium ion track intersections of different LET, 42 MeV d-Be neutrons, and hard X- or gamma-rays. The form of the dose-response curves was different for the two cell-types, and there was an overall difference in radiosensitivity, the human cells being the more sensitive to all radiations. However, for both inactivation and mutation-induction, the relative responses of both cell-types to these radiations was similar. Aluminium X-rays were considerably more effective than hard X- or gamma-rays and were at least as effective as helium ions of 20-28 keV micron-1, although aluminium X-rays produce tracks of very limited range (less than about 0.07 micron). Single track effects by aluminium X-rays cannot, therefore, extend beyond about 0.07 micron, and the subcellular sites involved in inactivation and mutation cannot be greater than this dimension or else the effectiveness of aluminium X-rays would be similar to that of low-LET radiations. This observation is in contradiction to models of radiation action which require relatively large sensitive sites; for example the 'theory of dual radiation action' requires a site diameter of about 0.4 micron to explain the shape of the dose-response curves for V79 hamster cells.  相似文献   

7.
The induction of resistance to 6-thioguanine by heavy ion exposure was investigated with various accelerated ions (oxygen-uranium) up to linear energy transfer (LET) values of about 15000 keV/µm.31 y Survival curves are exponential with fluence; mutation induction shows a linear dependence. Cross-sections (i: inactivation, m: mutation) were derived from the respective slopes. Generally, i rises over the whole LET range, but separateas into different declining curves for single ions with LET values above 200 keV/µm. Similar behaviour is seen for m. The new SIS facility at GSI, Darmstadt, makes it possible to study the effects of ions with the same LET but very different energies and track structures. Experiments using nickel and oxygen ions (up to 400 MeV/u) showed that inactivation cross-sections do not depend very much on track structure, i.e. similar values are found with different ions at the same LET. This is not the case for mutation induction, where very energetic ions display considerably smaller induction cross-sections compared with low-energy ions of identical LET. Preliminary analyses using the polymerase chain reaction (PCR) demonstrate that even heavy ions cause small alterations (small deletions or base changes). The proportion of the total deletions seems to increase with LET.Submitted paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

8.
Diploid wild-type yeast cells were exposed to beams of heavy ions covering a wide range of linear energy transfer (LET) (43-13,700 keV/microns). Synthesis of ribosomal RNA (rRNA) was assessed as a functional measure of damage produced by particle radiation. An exponential decrease of relative rRNA synthesis with particle fluence was demonstrated in all cases. The inactivation cross sections derived were found to increase with LET over the entire range of LET studied. The corresponding values for relative biological effectiveness were slightly less than unity. Maximum cross sections measured were close to 1 micron 2, implying that some larger structure within the yeast nucleus (e.g., the nucleolus) might represent the target for an impairment of synthetic activity by very heavy ions rather than the genes coding for rRNA. Where tested, an oxygen effect for rRNA synthesis could not be demonstrated.  相似文献   

9.
The genotoxicity of alpha particles in human embryonic skin fibroblasts   总被引:1,自引:0,他引:1  
Cell inactivation and induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus have been measured in cultured human fibroblasts (GM10) exposed to alpha particles from 238Pu (LET at the cell surface was 100 keV/microns) and 250 kVp X rays. The survival curves resulting from exposure to alpha particles are exponential. The mean lethal dose, D0, is approximately 1.3 Gy for X rays and 0.25 Gy for alpha particles. As a function of radiation dose, mutation induction at the HGPRT locus was linear for alpha particles whereas the X-ray-induced mutation data were better fitted by a quadratic function. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in cells exposed to alpha particles than to X rays.  相似文献   

10.
The quality of DNA damage induced by protons and -particles of various linear energy transfer (LET) was studied. The aim was to single out specific lesions in the DNA molecule that might lead to biological endpoints such as inactivation. A DNA model coupled with a track structure code (MOCA-15) were used to simulate the lesions induced on the two helixes. Four categories of DNA breaks were considered: single-strand breaks (ssb), bluntended double-strand breaks (dsb, with no or few overlapping bases), sticky-ended double-strand breaks (with cohesive free ends of many bases), and deletions (complex lesions which involve at least two dsb within a small number of base pairs). Calculations were carried out assuming various sets of parameters characterizing the production of these different DNA breaks. No large variations in the yields of ssb and blunt- or sticky-ended dsb were found in the LET range between 10 and 200 keV/µm. On the other hand, the yield of deletions increases up to about 100 keV/µm and seems to reach a plateau at higher LET values. In the LET interval from 30 to 60 keV/µm, protons proved to be more efficient than -particles in inducing deletions. The induction of these complex lesions is thus dependent not simply on LET but also on the characteristics of the track structure. Comparison with RBE values for cell killing shows that this special class of dsb might play an important role in radiation-induced cell inactivation.  相似文献   

11.
We have been studying LET and ion species dependence of RBE in mutation frequency and mutation spectrum of deletion pattern of exons in hprt locus. Normal human skin fibroblasts were irradiated with heavy-ion beams, such as carbon- (290 MeV/u and 135 MeV/u), neon- (230 MeV/u and 400 MeV/u), silicon- (490 MeV/u) and iron- (500 MeV/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at national Institute of Radiological Sciences (NIRS). Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies and deletion spectrum of exons was analyzed by multiplex PCR. The LET-RBE curves of mutation induction for carbon- and neon-ion beams showed a peak around 75 keV/micrometers and 155 keV/micrometers, respectively. On the other hand, there observed no clear peak for silicon-ion beams. The deletion spectrum of exons was different in induced mutants among different ion species. These results suggested that quantitative and qualitative difference in mutation occurred when using different ion species even if similar LET values.  相似文献   

12.
We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/microm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to (137)Cs gamma-rays. The mutation frequency increased up to 105 keV/microm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/mum showed all or partial deletions of exons, while among gamma-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not.  相似文献   

13.
Using highly energetic particles to irradiate plasmid DNA in aerobic aqueous solution, we have compiled an extensive database on how yields of DNA single- and double-strand breaks (SSBs and DSBs) vary with radiation quality. This study was performed in a low-scavenging buffer system and covers a wide range of ion species (helium to uranium) and LETs (5 to 16,000 keV/microm). For LETs up to around 40 keV/microm for SSBs and 400 keV/microm for DSBs, the total energy deposition determines cross section. At higher LET, cross sections level off and individual plateaus for particles of different atomic numbers are observed. For each ion species this is more pronounced and occurs at lower LET for SSBs than for DSBs, leading to an increase in the DSB:SSB ratio from 1:70 for X rays to 1:6 at 500 keV/microm. At this LET, the influence of track structure becomes evident, with high local concentrations of ionization events favoring the formation of DSBs and also intratrack recombination reactions. For lower-energy ions, a saturation in production of measurable DSBs is apparent, due to correlated lesion induction within densely ionizing particle tracks. For very heavy low-energy ions, both SSB and DSB cross sections decrease with particle velocity at nearly constant LET, forming individual hooked curves when plotted as a function of LET.  相似文献   

14.
The yield of his+ reversions in the Ames Salmonella tester strain TA2638 has been determined for 60Co gamma rays, 140 kV X rays, 5.4 keV characteristic X rays, 2.2 MeV protons, 3.1 MeV alpha particles, and 18 MeV/U Fe ions. Inactivation studies were performed with the same radiations. For both mutation and inactivation, the maximum effectiveness per unit absorbed dose was obtained for the characteristic X rays, which have a dose averaged linear energy transfer (LET) of roughly 10 keV/micron. The ratio of the effectiveness of this radiation to gamma rays was 2 for inactivation and about 1.4 for the his+ reversion. For both end points the effectiveness decreases substantially at high LET, i.e., for the alpha particles and the Fe ions. The composition of the bottom and the top agar was the one recommended by Maron and Ames [Mutat. Res. 113, 173-215 (1983)] for application in chemical mutagenicity tests. The experiments with the less penetrating radiations differed from the usual protocol by utilization of a technique of plating the bacteria on the surface of the top agar. As in an earlier study [Roos et al., Radiat. Res. 104, 102-108 (1985)] greatly enhanced yields of mutations, relative to the spontaneous reversion rate, were obtained in these experiments by performing the irradiations 6 h after plating, which differs from the conventional procedure to irradiate the bacteria shortly after plating.  相似文献   

15.
Radiation-induced DNA double-strand breaks (DSBs) were measured in Chinese hamster ovary cells (CHO-K1) using an experimental protocol involving static-field gel electrophoresis following exposure to various accelerated ions. Dose-effect curves were set up, and relative biological efficiencies (RBEs) for DSB induction were determined for different radiation qualities. RBEs around 1 were obtained for low energy deuterons (6–7 keV/µm), while for high energy oxygen ions (20keV/µm) an RBE value slightly greater than 1 was determined. Low energetic oxygen ions (LET=250 keV/µm) were found to show RBEs substantially below unity, and for higher LET particles (31 y-250 keVµm) RBEs for DSB induction were generally found to be smaller than 1. The data presented here are in line with the generally accepted view that not induced DSBs, but rather misrepaired or unrepaired DNA lesions are related to cellular inactivation.  相似文献   

16.
The induction of forward mutations (resistance to canavanine) by heavy ion bombardment was investigated in wild type haploid yeast Saccharomyces cerevisiae. Accelerated ions of argon, titanium, nickel, krypton, xenon, lead and uranium with specific energies between 1.7 and 9.25 MeV/u were obtained from the UNILAC machine at the Gesellschaft für Schwerionenforschung, Darmstadt/Germany. LET-values ranged from 1200 to about 15 000 keV/microns. There was no unequivocal dependence of mutation induction cross section on either LET or Z*2/beta 2, but also a prominent influence of ion specific energy. This is explained by the action of long-ranging delta-electrons.  相似文献   

17.
Carbon K characteristic ultrasoft X-rays of energy 0.278 keV were found to be effective in inducing inactivation and mutation to thioguanine resistance in cultured V79 Chinese hamster cells and human diploid fibroblasts. These X-rays act as a probe of the sensitive sites within the cells since they produce low-energy photoelectron tracks of range about 7 nm; this is an order of magnitude smaller than those produced by the 1.5 keV aluminium X-rays used in previous studies. A detailed interpretation of the results requires assumptions to be made about the positions of the sensitive sites within the cells but, for any reasonable set of assumptions, the carbon X-rays are found to be more effective than gamma-rays and are probably at least as effective as long tracks of helium ions of similar LET. These observations extend the conclusions previously drawn from the observed effectiveness of aluminium X-rays regarding the sizes of the subcellular sites involved in inactivation and mutation. They imply that the sensitive sites smaller than about 7 nm, and that highly localized energy depositions consisting of less than or approximately 14 ionizations are sufficient to produce biological effects. These results are also in contradiction to models of radiation action which require relatively large sites, such as the usual form of the 'theory of dual radiation action'.  相似文献   

18.
To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425keV/μm) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113keV/μm). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113keV/μm carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>~30kb) were six times more frequently induced by carbon ions near the range end. When 352keV/μm neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113keV/μm carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.  相似文献   

19.
Dose-response curves for micronucleus (MN) formation were measured in Chinese hamster V79 and xrs6 (Ku80(-)) cells and in human mammary epithelial MCF10A cells in the dose range of 0.05-1 Gy. The Chinese hamster cells were exposed to 1 GeV/nucleon iron ions, 600 MeV/nucleon iron ions, and 300 MeV/nucleon iron ions (LETs of 151, 176 and 235 keV/microm, respectively) as well as with 320 kVp X rays as reference. Second-order polynomials were fitted to the induction curves, and the initial slopes (the alpha values) were used to calculate RBE. For the repair-proficient V79 cells, the RBE at these low doses increased with LET. The values obtained were 3.1 +/- 0.8 (LET = 151 keV/microm), 4.3 +/- 0.5 (LET = 176 keV/microm), and 5.7 +/- 0.6 (LET = 235 keV/microm), while the RBE was close to 1 for the repair-deficient xrs6 cells regardless of LET. For the MCF10A cells, the RBE was determined for 1 GeV/nucleon iron ions and was found to be 5.5 +/- 0.9, slightly higher than for V79 cells. To test the effect of shielding, the 1 GeV/nucleon iron-ion beam was intercepted by various thicknesses of high-density polyethylene plastic absorbers, which resulted in energy loss and fragmentation. It was found that the MN yield for V79 cells placed behind the absorbers decreased in proportion to the decrease in dose both before and after the iron-ion Bragg peak, indicating that RBE did not change significantly due to shielding except in the Bragg peak region. At the Bragg peak itself with an entrance dose of 0.5 Gy, where the LET is very high from stopping low-energy iron ions, the effectiveness for MN formation per unit dose was decreased compared to non-Bragg peak areas.  相似文献   

20.
An analysis and interpretation is presented of published data concerning the dependence of radiobiological effectiveness on the radiation quality of photons, neutrons and heavy ions for the induction of these two effects in different types of mammalian cell. The results of this analysis suggest that chromosome aberrations observable at mitosis show a stronger dependence on YF or LET infinity than cell inactivation. At high YF, observable abberrations provide a major contribution to cell reproductive death induced by small doses. At low YF the effectiveness of small doses for cell death depends mainly on another type of damage, possibly also induced in the chromosomes, but not observable at mitosis. This type of damage depends less of YF or LET infinity than observable aberrations. The implications of these differences in damage in relation to radiation quality for the extrapolation of data on other types of damage to small doses of interest in radiation protection are discussed in relation to maximum r.b.e values observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号