首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We used laser vibrometry to study the vibrational frequency response of the eardrum of female gray tree frogs for different positions of the sound source in three-dimensional space. Furthermore, we studied the accuracy of 3-D phonotaxis in the same species for sounds with different frequency contents. 2. The directionality of the eardrum was most pronounced in a narrow frequency range between 1.3 and 1.8 kHz. 3. The average 3-D, horizontal and vertical jump error angles for phonotactic approaches with a sound similar to the natural advertisement call (1.1 and 2.2 kHz frequency components) were 23 degrees, 19 degrees and 12 degrees, respectively. 4. 3-D jump error angle distributions for the 1.4 + 2.2 kHz, 1.0 kHz and 2.0 kHz sounds were not significantly different from that for the 1.1 + 2.2 kHz sound. 5. The average 3-D jump error angle for the 1.4 kHz sound was 36 degrees, and the distribution was significantly different from that for the 1.1 + 2.2 kHz sound. Hence, phonotactic accuracy was poorer in the frequency range of maximum eardrum directionality. 6. Head scanning was not observed and is apparently unnecessary for accurate sound localization in three-dimensional space. 7. Changes in overall sound pressure level experienced by the frog during phonotactic approaches are not an important cue for sound localization.  相似文献   

2.
To reduce the amount of radiographs needed for patients with a scoliosis, a radiation-free method based on topographic images of the back was developed. An active contour model simulating spinal stiffness has been applied to video rasterstereographic (VRS) data. The aim of the present study is (a) to evaluate the applicability of active contours to improve the accuracy and the reliability of the three-dimensional (3D) spinal midline reconstruction from back surface data and (b) to design a more robust method to detect the spinal midline. To evaluate the reliability and accuracy, the active contour-based method is compared to a conventional procedure, which has been specifically developed for scoliosis; both methods produce a 3D curve of the spinal midline. The frontal projections and surface rotations of these spinal midlines are compared; r.m.s. deviations of 0.9 mm between the frontal curves and 0.4 degrees between the surface rotations were obtained. Applying the active contour-based method does therefore not result in a substantial difference in accuracy to the conventional procedure. As a conclusion the active contour method is a valuable mathematical method that can accurately reconstruct the spinal midline based on back surface data. In addition, the method can be applied to various postures.  相似文献   

3.
This paper proposes and evaluates an innovative video-based method for measuring the trunk volume during respiration, using projected light and surface reconstruction. The method consists of the following main steps: (a) to project a grid of circular light markers on the anterior and posterior human body trunk surface during breathing, (b) to register the subject's trunk surface using two pairs of pre-calibrated digital video cameras, (c) to segment the video stream and track the projected markers using pre-processing techniques, morphological operators and detection algorithms, (d) to label the corresponding markers in the video sequences registered by each pair of stereo cameras, (e) to reconstruct the 3-D coordinates of all markers, (f) to reconstruct the surfaces from the unordered cloud of points using the Power Crust method and (g) to calculate the trunk volume in function of time using the divergence theorem. The evaluation of the method was based on two experiments. (1) Comparison of the volume of a trunk model (mannequin) by immersion and using the proposed optical method. (2) Analysis of the applicability of the method for measuring a subject's trunk volume during a vital capacity respiratory manoeuvre. The results showed that the method was able to automatically measure more than 2000 projected points per image and to provide a very detailed representation of the subject's trunk. The relative accuracy of the volume measurement was estimated to be better than 3%. The analysis of the experiments revealed that signals coherent with the respiratory cycles could be identified through this method. In conclusion, the method based on light projection and surface reconstruction provides an accurate, non-invasive and useful means to calculate human trunk volumes during breathing.  相似文献   

4.
Patients with the initial stage of Parkinson disease (PD) and matched controls performed repetitive bendings and turnings in standing position. Tasks included trunk movements in each of the anatomical planes: sagittal, frontal and axial. Electromagnetic system Flock of Birds was used for movement registration. Sensors were fixed at different segments of subject's body. Joint angles in the ankle, hip and torso as well as coordinates of the center of pressure served as output parameters. The amplitudes of joint angles were found to be lower in PD patients. Performance of the axial rotation revealed most pronounced differences. Thus, the amplitudes of joint angles of trunk movements in different anatomical planes reliably discriminate between PD patients and healthy subjects.  相似文献   

5.
Indirect methods of measuring ventilation, such as the respiratory inductive plethysmograph (RIP), operate on the assumption that the respiratory system possesses two degrees of freedom of motion: the rib cage and abdomen. Accurate measurements have been obtained in many patients with pulmonary disease who possess additional degrees of freedom. Since calibration and validation of the RIP was carried out during quiet breathing in these patients, the amount of asynchronous or paradoxic breathing was presumably similar during the calibration and validation runs. Conversely, accuracy might be lost if following the initial calibration procedure the magnitude of chest wall distortion increased during subsequent validation runs. We calibrated the RIP during quiet breathing and examined its accuracy while subsequently breathing against resistive loads that required the generation of 20-80% of the subject's maximum inspiratory mouth pressure (Pmmax). We compared the relative accuracy of three commonly employed calibration methods: isovolume technique, least-squares technique, and single position loop-area technique. Up to 60% of Pmmax, 89% of the RIP values with the least-squares technique were within +/- 10% of simultaneous spirometric (SP) measurements and 100% were within +/- 20% of SP, compared with 63 and 91%, respectively, for the loop-area technique and 19 and 54%, respectively, for the isovolume technique. At 70 and 80% of Pmmax accuracy deteriorated. Accuracy of respiratory timing was judged in terms of fractional inspiratory time (TI/TT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We recorded body temperatures in four runners, two squash players and one swimmer at 1-min intervals using miniature data loggers. These single-channel loggers are small and light (25 g), and were easily carried by the athletes during their sporting activities. Wide-range loggers (-37 degrees C to +46 degrees C), which had a temperature resolution of 0.4 degrees C, were used to measure thigh skin temperature. Auditory canal temperature and rectal temperature were measured with narrow-range loggers (+34 degrees C to + 46 degrees C) which had a considerably higher resolution (0.04 degrees C). With the aid of visual analogue scales subjects reported that the thermometric equipment caused very little discomfort or impairment of exercise performance. Loggers connected to uncoated bead thermistors (used for skin and auditory canal temperatures) had a thermal time constant of 0.4 s, and that of the coated thermistors (rectal probes) was 6 s. We were able to waterproof the equipment and measure rectal temperature in a swimmer. Hot (35 degrees C) or cold (5 degrees C) ambient temperatures had an insignificant effect on the intrinsic accuracy of the data loggers, even when used without recalibration at those temperatures. We believe that miniature temperature loggers are convenient and accurate thermometers for use during sporting activities and may provide new insights into thermoregulation during exercise.  相似文献   

7.
Previous studies investigated the effects of crossmodal spatial attention by comparing the responses to validly versus invalidly cued target stimuli. Dynamics of cortical rhythms in the time interval between cue and target might contribute to cue effects on performance. Here, we studied the influence of spatial attention on ongoing oscillatory brain activity in the interval between cue and target onset. In a first experiment, subjects underwent periods of tactile stimulation (cue) followed by visual stimulation (target) in a spatial cueing task as well as tactile stimulation as a control. In a second experiment, cue validity was modified to be 50%, 75%, or else 25%, to separate effects of exogenous shifts of attention caused by tactile stimuli from that of endogenous shifts. Tactile stimuli produced: 1) a stronger lateralization of the sensorimotor beta-rhythm rebound (15-22 Hz) after tactile stimuli serving as cues versus not serving as cues; 2) a suppression of the occipital alpha-rhythm (7-13 Hz) appearing only in the cueing task (this suppression was stronger contralateral to the endogenously attended side and was predictive of behavioral success); 3) an increase of prefrontal gamma-activity (25-35 Hz) specifically in the cueing task. We measured cue-related modulations of cortical rhythms which may accompany crossmodal spatial attention, expectation or decision, and therefore contribute to cue validity effects. The clearly lateralized alpha suppression after tactile cues in our data indicates its dependence on endogenous rather than exogenous shifts of visuo-spatial attention following a cue independent of its modality.  相似文献   

8.
The purpose of this study was to investigate short-term changes in reactions to sudden unexpected loading of the low back. The study utilized a set-up where a horizontal force of 58 N pointing forward suddenly was applied to the upper part of the subject's trunk. EMG activity from the erector spinae muscles and trunk movement data were recorded during 10 trials for 19 subjects. The analysis included EMG reaction time, mean rectified EMG amplitude during the period 50-250 ms after the sudden loading, and time elapsed until stopping of the forward movement of the trunk (stopping time). Reaction time means ranged from 66 to 97 ms (79+/-9 ms), and no difference was found between the trials. Conversely, the mean stopping time for the first trial (468 ms) was significantly higher than for trials 3-10 (359- 371 ms), and the average EMG amplitude during the period 50-250 ms after the sudden loading was lower for the first trial. This study showed that some subjects adapted to sudden unexpected loadings of the low back through a reduction in stopping time and a progression in EMG response during the first few trials. This possible adaptation to repeated trials have been overlooked in previous studies.  相似文献   

9.
The accuracy of subjective reports, especially those involving introspection of one''s own internal processes, remains unclear, and research has demonstrated large individual differences in introspective accuracy. It has been hypothesized that introspective accuracy may be heightened in persons who engage in meditation practices, due to the highly introspective nature of such practices. We undertook a preliminary exploration of this hypothesis, examining introspective accuracy in a cross-section of meditation practitioners (1–15,000 hrs experience). Introspective accuracy was assessed by comparing subjective reports of tactile sensitivity for each of 20 body regions during a ‘body-scanning’ meditation with averaged, objective measures of tactile sensitivity (mean size of body representation area in primary somatosensory cortex; two-point discrimination threshold) as reported in prior research. Expert meditators showed significantly better introspective accuracy than novices; overall meditation experience also significantly predicted individual introspective accuracy. These results suggest that long-term meditators provide more accurate introspective reports than novices.  相似文献   

10.
Recent studies have shown that the feeling of body ownership can be fooled by simple visuo-tactile manipulations. Perceptual illusions have been reported in which participants sense phantom touch seen on a rubber hand (rubber hand illusion). While previous studies used homologous limbs for those experiments, we here examined an illusion where people feel phantom touch on a left rubber hand when they see it brushed simultaneously with brushes applied to their right hand. Thus, we investigated a referral of touch from the right to the left hand (across the body midline). Since it is known from animal studies that tactile illusions may alter early sensory processing, we expected a modulation of the primary somatosensory cortex (SI) corresponding to this illusion. Neuromagnetic source imaging of the functional topographic organization in SI showed a shift in left SI, associated with the strength of the referral of touch. Hence, we argue that SI seems to be closely associated with this perceptual illusion. The results suggest that the transfer of tactile information across the body midline could be mediated by neurons with bilateral tactile receptive fields (most likely BA2).  相似文献   

11.
The accuracy of the underwater and airborne horizontal localization of different acoustic signals by the northern fur seal was investigated by the method of instrumental conditioned reflexes with food reinforcement. For pure-tone pulsed signals in the frequency range of 0.5-25 kHz the minimum angles of sound localization at 75% of correct responses corresponded to sound transducer azimuth of 6.5-7.5 degrees +/- 0.1-0.4 degrees underwater (at impulse duration of 3-90 ms) and of 3.5-5.5 degrees +/- 0.05-0.5 degrees in air (at impulse duration of 3-160 ms). The source of pulsed noise signals (of 3-ms duration) was localized with the accuracy of 3.0 degrees +/- 0.2 degrees underwater. The source of continuous (of 1-s duration) narrow band (10% of c.fr.) noise signals was localized in air with the accuracy of 2-5 degrees +/- 0.02-0.4 degrees and of continuous broad band (1-20 kHz) noise, with the accuracy of 4.5 degrees +/- 0.2 degrees.  相似文献   

12.
Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.  相似文献   

13.
Characteristics of the mismatch negativity (MMN) were studied by presenting the subjects with four blocks of stimuli containing standard series of clicks (90%) simulating a stationery sound image located in the head midline, and one of three different deviant series of clicks (10%) simulating either a stationary sound image located near the left ear or a moving sound image which shifted from the head midline to the left ear or in the opposite direction. All the deviant stimuli elicited the MMN with the minimal peak amplitude and the greatest latency evoked by the deviant series of clicks simulating the sound image moving from the head midline to the left ear. These findings suggest that the MMN may be considered as a pre-perceptual physiological measure of the discrimination accuracy for the sound signals with various spatial locations.  相似文献   

14.
1. Frequency and space representation in the auditory cortex of the big brown bat, Eptesicus fuscus, were studied by recording responses of 223 neurons to acoustic stimuli presented in the bat's frontal auditory space. 2. The majority of the auditory cortical neurons were recorded at a depth of less than 500 microns with a response latency between 8 and 20 ms. They generally discharged phasically and had nonmonotonic intensity-rate functions. The minimum threshold, (MT) of these neurons was between 8 and 82 dB sound pressure level (SPL). Half of the cortical neurons showed spontaneous activity. All 55 threshold curves are V-shaped and can be described as broad, intermediate, or narrow. 3. Auditory cortical neurons are tonotopically organized along the anteroposterior axis of the auditory cortex. High-frequency-sensitive neurons are located anteriorly and low-frequency-sensitive neurons posteriorly. An overwhelming majority of neurons were sensitive to a frequency range between 30 and 75 kHz. 4. When a sound was delivered from the response center of a neuron on the bat's frontal auditory space, the neuron had its lowest MT. When the stimulus amplitude was increased above the MT, the neuron responded to sound delivered within a defined spatial area. The response center was not always at the geometric center of the spatial response area. The latter also expanded with stimulus amplitude. High-frequency-sensitive neurons tended to have smaller spatial response areas than low-frequency-sensitive neurons. 5. Response centers of all 223 neurons were located between 0 degrees and 50 degrees in azimuth, 2 degrees up and 25 degrees down in elevation of the contralateral frontal auditory space. Response centers of auditory cortical neurons tended to move toward the midline and slightly downward with increasing best frequency. 6. Auditory space representation appears to be systematically arranged according to the tonotopic axis of the auditory cortex. Thus, the lateral space is represented posteriorly and the middle space anteriorly. Space representation, however, is less systematic in the vertical direction. 7. Auditory cortical neurons are columnarly organized. Thus, the BFs, MTs, threshold curves, azimuthal location of response centers, and auditory spatial response areas of neurons sequentially isolated from an orthogonal electrode penetration are similar.  相似文献   

15.
Attention without awareness in blindsight.   总被引:3,自引:0,他引:3  
The act of attending has frequently been equated with visual awareness. We examined this relationship in 'blindsight'--a condition in which the latter is absent or diminished as a result of damage to the primary visual cortex. Spatially selective visual attention is demonstrated when information that stimuli are likely to appear at a specific location enhances the speed or accuracy of detection of stimuli subsequently presented at that location. In a blindsight subject, we showed that attention can confer an advantage in processing stimuli presented at an attended location, without those stimuli entering consciousness. Attention could be directed both by symbolic cues in the subject's spared field of vision or cues presented in his blind field. Cues in his blind field were even effective in directing his attention to a second location remote from that at which the cue was presented. These indirect cues were effective whether or not they themselves elicited non-visual awareness. We concluded that the spatial selection of information by an attentional mechanism and its entry into conscious experience cannot be one and the same process.  相似文献   

16.
Sound pressure level of tone was measured using a probe tube microphone at entrance to the dog's external meatus as a function of the azimuth of the sound source. It was demonstrated that directionality of the dog's external ear and corresponding values of interaural intensity differences (delta I) were gradually increased as the tone frequency raised from 0.5 to 40 kHz. Transfer in pinnae locations from lateral to frontal positions (one of the components of orientation reaction to an unexpected sound) resulted in some narrowing of directionality diagrams and in a displacement of their maxima towards the head midline. It was calculated that owing to this effects the extent of monotonic part of the function relating delta I and azimuth of a source were enlarged. The lateral pinnae position was suggested to be optimal for sound detection and the frontal one for localization of the moving sound source.  相似文献   

17.
The accuracy and reliability of a sonomicrometry system (Sonometrics Corporation, Ontario, Canada) was evaluated for its potential use in measuring 3-D in vivo joint kinematics. Distances between different sets of piezoelectric crystals were measured through a salt solution using ultrasound technology. We evaluated crystal-to-crystal distance under simulated in vivo conditions of changing crystal orientation and displacement magnitude. Crystal-to-crystal distance was also evaluated under changing solution temperature, since the crystals may be used at different temperatures. The 2 mm round and peg crystals were accurate to within 0.5mm for 0 through 180 degrees rotations, but the 2mm round suture loop crystals were only reliable at 0 degrees rotation. The speed of sound through a salt solution (and hence the distance between crystals) versus temperature was fit using a second order polynomial, C=1421.1+3.9808T-3.09x10(-2)T2, with an R2 value of 0.9998. The translational error was less than 0.072 mm for crystal displacements of 0.012, 0.2, 1.0, and 5.0 mm. The system was also accurate under dynamic conditions with translational errors that were less than 0.045 mm under 0.65 Hz motion. These results suggest that the Sonometrics crystals possess attributes (translational accuracy and rotational independence) that could provide the basis for a system capable of measuring joint kinematics.  相似文献   

18.
Axonal growth cones require an evolutionary conserved repulsive guidance system to ensure proper crossing of the CNS midline. In Drosophila, the Slit protein is a repulsive signal secreted by the midline glial cells. It binds to the Roundabout receptors, which are expressed on CNS axons in the longitudinal tracts but not in the commissural tracts. Here we present an analysis of the genes leak and kuzbanian and show that both genes are involved in the repulsive guidance system operating at the CNS midline. Mutations in leak, which encodes the Roundabout-2 Slit receptor, were first recovered by Nüsslein-Volhard and co-workers based on defects in the larval cuticle. Analysis of the head phenotype suggests that slit may be able to act as an attractive guidance cue while directing the movements of the dorsal ectodermal cell sheath. kuzbanian also regulates midline crossing of CNS axons. It encodes a metalloprotease of the ADAM family and genetically interacts with slit. Expression of a dominant negative Kuzbanian protein in the CNS midline cells results in an abnormal midline crossing of axons and prevents the clearance of the Roundabout receptor from commissural axons. Our analyses support a model in which Kuzbanian mediates the proteolytic activation of the Slit/Roundabout receptor complex.  相似文献   

19.
Bearing surfaces of total condylar knees which are designed with a high degree of conformity to produce low stresses in the polyethylene tibial insert may be overconstrained. This study determines femoral and tibial bearing surface geometries which will induce the least destructive fatigue mechanisms in the polyethylene whilst conserving the laxity of the natural knee. Sixteen knee designs were generated by varying four parameters systematically to cover the range of contemporary knee designs. The parameters were the femoral frontal radius (30 or 70 mm), the difference between the femoral and tibial frontal radii (2 or 10 mm), the tibial sagittal radius (56 or 80 mm) and the posterior-distal transition angle (-8 or -20 degrees), which is the angle at which the small posterior arc of the sagittal profile transfers to the larger distal arc. Rigid body analyses determined the anterior-posterior and rotational motions as well as the contact points during the stance phase of gait for the different designs. In addition, a damage function which accumulated the fluctuating maximum shear stresses was used to predict the susceptibility to delamination wear of the polyethylene (damage score). This study predicted that of the 16 designs, the knee with a frontal radius of 70 mm, a difference in femoral and tibial frontal radii of 2 mm, a tibial sagittal radius of 80 mm and a posterior distal transition angle of -20 degrees would satisfy the conflicting needs of both resistance to delamination wear and natural kinematics.  相似文献   

20.
Posture-dependent trunk function data are important for appropriate normalization of submaximal trunk exertions, and is also necessary to define a more precise and specific use for strength testing in the prevention and diagnosis of spinal disorders. The aim of the current study was to quantify maximal effort trunk muscle extensor activity and trunk isometric extension torque over a functional range of sagittal standing postures. Twenty healthy, young adult male and female subjects performed isometric extension tasks over a sagittal posture range of -20 degrees extension to +50 degrees flexion, in 10 degrees increments. Erector spinae muscle activity was recorded bilaterally at the level of L3 using surface EMG electrodes. Isometric trunk extension torque was measured using a trunk dynamometer. EMG and trunk torque differed significantly between genders, but there were no differences between male and female subjects when the data were normalized with respect to the upright posture. For the combined male and female population, upright posture normalized L3 EMG activity (EMGn) and trunk extension torque (Tn) increased 1.7-fold and 3.5-fold, respectively, over the 70 degrees range of sagittal postures examined. The ratio (Tn/EMGn) increased two-fold (0.83 to 1.67) from -20 degrees extension to +50 degrees flexion, indicating that the neuromuscular efficiency increases with flexion. Trunk extension torque normalized with respect to the upright posture was linearly and positively correlated (r = 0.59, P < 0.001) to similarly normalized L3 EMG activity. This relatively weak correlation suggests that trunk muscle synergism and/or intrinsic muscle length-tension relationships are also modulated by posture. This study provides data that can be used to estimate trunk extensor muscle function over a broad range of sagittal postures. Our findings indicate that appropriate postural normalization of trunk extensor EMG activity is necessary for studies where submaximal trunk exertions are performed over a range of upright postures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号