首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Kallajoki  K Weber    M Osborn 《The EMBO journal》1991,10(11):3351-3362
Six monoclonal antibodies identify a 210 kDa polypeptide which shows a cell cycle specific redistribution from the nucleus to the mitotic spindle. In interphase cells this polypeptide was localized in the nucleus and behaved during differential cell extraction as a component of the nuclear matrix. It accumulated in the centrosome region at prophase, in the pole regions of the mitotic spindle at metaphase and in crescents at the poles in anaphase, and reassociated with the nuclei as they reformed in telophase. Due to its staining pattern we call the protein the Spindle Pole-Nucleus (SPN) antigen. The localization of SPN antigen during mitosis was dependent on the integrity of the spindle since treatment of cells with nocodazole resulted in the dispersal of SPN antigen into many small foci which acted as microtubule organizing centres when the drug was removed. The SPN antigen was present in nuclei and mitotic spindles of all human and mammalian cell lines and tissues so far tested. When microinjected into the cytoplasm or nuclei of HeLa cells, one antibody caused a block in mitosis. Total cell number remained constant or decreased slightly after 24 h. At this time, about half the cells were arrested in a prometaphase-like state and revealed aberrant spindles. Many other cells were multinucleate. These results show that the SPN antigen is a protein associated with mitotic spindle microtubules which has to function correctly for the cell to complete mitosis.  相似文献   

2.
The synthesis of phospholipids and glycolipids during the cell mitotic cycle of an established hamster line, NIL, has been studied. Cells were synchronized with excess thymidine and mitotically harvested by shaking. Cells were radioactively labeled for 4 h with palmitate, glucosamine, or galactose. Lipids were analyzed by thin-layer chromatography. As cells progressed through the mitotic cycle, incorporation into phospholipids increased but the fraction represented by each remained constant. Similarly, ceramide monohexoside, dihexoside, and hematoside were labeled equally in all phases. Ceramide trihexoside and tetrahexoside were labeled only during G1 and S. Ceramide pentahexoside (the Forssman antigen) shows density-dependent synthesis, accumulation, and reactivity. Ceramide pentahexoside was labeled during all phases of the mitotic cycle but the rate of incorporation decreased in S and G2. The total amount of lipid assayed immunologically in cell extracts gradually increased. Exposure of the Forssman antigen in untreated or trypsin-treated cells was studied using binding of chemically labeled antiForssman antiserum. The amount of antigen detected in trypsinized cells increased during G1 and early S but then remained constant. Mitotic cells exposed all detectable antigen. As cells progressed through the mitotic cycle, a large fraction of the Forssman antigen became cryptic.  相似文献   

3.
During mitotic entry, the centrosomes provide a scaffold for initial activation of the CyclinB/Cdk1 complex, the mitotic kinase Aurora A, and the Aurora A-activating kinase p21-activated kinase (PAK). The activation of PAK at the centrosomes is yet regarded to happen independently of the Rho-GTPases Rac/Cdc42. In this study, Rac1 (but not RhoA or Cdc42) is presented to associate with the centrosomes from early G2 phase until prometaphase in a cell cycle-dependent fashion, as evidenced by western blot analysis of prepared centrosomes and by immunolabeling. PAK associates with the G2/M-phase centrosomes in a Rac1-dependent fashion. Furthermore, specific inhibition of Rac1 by C. difficile toxinB-catalyzed glucosylation or by knockout results in inhibited activation of PAK1/2, Aurora A, and the CyclinB/Cdk1 complex in late G2 phase/prophase and delayed mitotic entry. Inhibition of PAK activation at late G2-phase centrosomes caused by Rac1 inactivation coincides with impeded activation of Aurora A and the CyclinB/Cdk1 complex and delayed mitotic entry.  相似文献   

4.
TGF-beta regulation of epithelial cell proliferation.   总被引:4,自引:0,他引:4  
  相似文献   

5.
Mitochondrial protein synthesis was measured in line CHO cells after phases of the cell cycle were synchronized by isoleucine deprivation or mitotic selection. Maximum incorporation of [3H] leucine into mitochondrial polypeptides occurred within 2 hours after isoleucine was added to initiate G1 traverse. In cells synchronized in G1 by mitotic selection, the rate of mitochondrial protein synthesis was fairly constant throughout the cell cycle. SDS-polyacrylamide gel electrophoretic profiles of labeled mitochondrial polypeptides were similar in cells synchronized by either isoleucine deprivation or mitotic selection. Obvious changes in the distribution of polypeptides were not detected during various phases of the cell cycle. The increased rate of incorporation of [3H] leucine into mitochondrial polypeptides after reversal of G1-arrest may indicate that mitochondrial protein synthesis and possibly mitochondrial biogenesis are synchronized in CHO cells deprived of isoleucine.  相似文献   

6.
The proliferation kinetics of cells of the line NHIK 1922 grown in vitro and as solid tumours in the athymic mutant nude mouse has been studied. In vitro, growth curves were determined for exponentially growing populations and for populations synchronized by mitotic selection. The phase durations for these populations were determined by flow cytofluorometric measurements of DNA-histograms and pulsed incorporation of [3H]TdR respectively. The generation time and the phase durations for synchronized populations were found to be about equal to those for exponentially growing populations. The duration of the phases G1, S and G2+ M was found to be 8·5–9·5, 11·0–12·0 and 6·0–6·5 hr respectively, i.e. the generation time was 26·5–27·0 hr. The proliferation kinetics in vivo were studied by flow cytofluorometry and by the technique of percentage labelled mitoses. The median duration of S-phase and (G2+ M)-phase in vivo was found to be approximately the same as that observed in vitro, while the median duration of G1-phase was found to be approximately 5 hr longer in vivo than under the present in vitro growth conditions. The growth fraction in vivo was estimated to be approximately 50%. The non-proliferative compartment of the tumour cells was found to consist mainly of cells with the DNA-content of cells in G1-phase. It is concluded that the reduced rate of proliferation of NHIK 1922 cells in vivo is correlated with alterations in the duration of G1-phase and, hence, the proportion of cells in G1-phase.  相似文献   

7.
S. Hasezawa  T. Nagata 《Protoplasma》1993,176(1-2):64-74
Summary A 49 kDa protein in tobacco BY-2 cells has been found to be cross-reactive with antibodies raised against a 51 kDa protein that was isolated from sea urchin centrosomes and identified as a microtubule-organizing center (MTOC) in animal cells. Tracing the fate of the 49 kDa protein during progression of the cell cycle in highly synchronized tobacco BY-2 cells revealed that this protein was colocalized with plant microtubules (MTs): the location of the 49 kDa protein coincided with preprophase bands (PPBs), mitotic spindles and phragmoplasts. Furthermore, between the M and G1 phases, the 49 kDa protein was observed in the perinuclear regions, in which the initials of MTs are organizing to form cortical MTs. At the G1 phase the location of the 49 kDa protein in the cell cortex coincided with that of the cortical MTs. It appeared that the 49 kDa protein in the cell cortex was transported as granules from the perinuclear regions. Thus, it is highly probable that the 49 kDa protein, which reacts with antibodies against the 51 kDa protein in sea urchin centrosomes, plays the role of an MTOC in plant cells. Thus, the mechanisms for organizing MTs in higher organisms appear to share a common protein, even though the organization of MTs is superficially very different in plant and animal cells.Abbreviations DAPI 4,6-diamidino-2-phenyl indole - MT microtubule - MTOC microtubule-organizing center - PAGE polyacrylamide gel electrophoresis - PBS phosphate-buffered saline - PPB preprophase band - SDS sodium dodecylsulfate  相似文献   

8.
Dyskerin is a highly conserved, nucleolar RNA-binding protein with established roles in small nuclear ribonucleoprotein biogenesis, telomerase and telomere maintenance and precursor rRNA processing. Telomerase is functional during S phase and the bulk of rRNA maturation occurs during G1 and S phases; both processes are inactivated during mitosis. Yet, we show that during the course of cell cycle progression, human dyskerin expression peaks during G2/M in parallel with the upregulation of pro-mitotic factors. Dyskerin redistributed from the nucleolus in interphase cells to the perichromosomal region during prometaphase, metaphase and anaphase. With continued anaphase progression, dyskerin also localized to the cytoplasm within the mid-pole region. Loss of dyskerin function via siRNA-mediated depletion promoted G2/M accumulation and this was accompanied by an increased mitotic index and activation of the spindle assembly checkpoint. Live cell imaging further revealed an array of mitotic defects including delayed prometaphase progression, a significantly increased incidence of multi-polar spindles, and anaphase bridges culminating in micronucleus formation. Together, these findings suggest that dyskerin is a highly dynamic protein throughout the cell cycle and increases the repertoire of fundamental cellular processes that are disrupted by absence of its normal function.  相似文献   

9.
When proliferating fission yeast cells are exposed to nitrogen starvation, they initiate conjugation and differentiate into ascospores. Cell cycle arrest in the G1-phase is one of the prerequisites for cell differentiation, because conjugation occurs only in the pre-Start G1-phase. The role of ste9+ in the cell cycle progression was investigated. Ste9 is a WD-repeat protein that is highly homologous to Hct1/Cdh1 and Fizzy-related. The ste9 mutants were sterile because they were defective in cell cycle arrest in the G1-phase upon starvation. Sterility was partially suppressed by the mutation in cig2 that encoded the major G1/S cyclin. Although cells lacking Ste9 function grow normally, the ste9 mutation was synthetically lethal with the wee1 mutation. In the double mutants of ste9 cdc10ts, cells arrested in G1-phase at the restrictive temperature, but the level of mitotic cyclin (Cdc13) did not decrease. In these cells, abortive mitosis occurred from the pre-Start G1-phase. Overexpression of Ste9 decreased the Cdc13 protein level and the H1-histone kinase activity. In these cells, mitosis was inhibited and an extra round of DNA replication occurred. Ste9 regulates G1 progression possibly by controlling the amount of the mitotic cyclin in the G1-phase.  相似文献   

10.
We have shown earlier that, in cells expressing the retinoblastoma protein (pRB), a protein phosphatase (PP) 1alpha mutant (T320A) resistant to inhibitory phosphorylation by cyclin-dependent kinases (Cdks) causes G(1) arrest. In this study, we examined the cell cycle-dependent phosphorylation of PP1alpha in vivo using three different antibodies. PP1alpha was phosphorylated at Thr-320 during M-phase and again in late G(1)- through early S-phase. Inhibition of Cdk2 led to a small increase in PP1 activity and also prevented PP1alpha phosphorylation. In vitro, PP1alpha was a substrate for Cdk2 but not Cdk4. In pRB-deficient cells, phosphorylation of PP1alpha occurred in M-phase but not at G(1)/S. G(1)/S phosphorylation was at least partially restored after reintroduction of pRB into these cells. Consistent with this result, PP1alpha phosphorylated at Thr-320 co-precipitated with pRB during G(1)/S but was found in extracts immunodepleted of pRB in M-phase. In conjunction with earlier studies, these results indicate that PP1alpha may control pRB function throughout the cell cycle. In addition, our new results suggest that different subpopulations of PP1alpha regulate the G(1)/S and G(2)/M transitions and that PP1alpha complexed to pRB requires inhibitory phosphorylation by G(1)-specific Cdks in order to prevent untimely reactivation of pRB and permit transition from G(1)- to S-phase and/or complete S-phase.  相似文献   

11.
The cell membrane potential of cultured Chinese hamster cells is known to increase at the start of the S phase. The putative role of the cell membrane potential as a regulator of cell proliferation was examined by following the cell cycle traverse of synchronized Chinese hamster cells in the presence or absense of high exogenous levels of potassium. An increase in external potassium levels results in a depressed membrane potential and a reduced rate of cell proliferation. A potassium concentration of 115 mM was used in experiments with synchronized cells since at that level cell proliferation is almost completely halted, recovery of growth is rapid and complete, and the membrane potential is reduced to a level well below that normally found in cells in the G1 phase. A mitotic population was divided into four aliquots and plated in either control medium or medium containing 115 mM K+. Cells placed directly into high K+ medium were retarded in their exit from mitosis and displayed a delayed and abnormal entry into the S phase. If control medium was added after two hours, cell cycle traverse was normal, but delayed by two hours compared to control cells. If the mitotic cells were plated directly into control medium and two hours later were shifted to high K+ medium, the cells entered the S phase in the absence of the normally observed increase in membrane potential and proceeded to the next mitosis normally. It was concluded that the increase in membrane potential observed at the start of the S phase in isolated synchronized cells is not a requirement for the initiation of DNA synthesis. In addition, sensitivity to the high potassium regimen was found at two different times during the cell cycle. In one case, cells were impeded in their transit through mitosis. Such cells displayed an altered chromosome structure which may account for the partial mitotic block. In the second case, synchronized cells displayed a sensitivity to the high potassium regimen in early G1 which appeared to be separate from the block in mitosis and independent of a change in the membrane potential.  相似文献   

12.
BALB/c mice were immunized with tyrosinase, partially purified in two stages from a human melanoma cell line. A hybridoma was obtained which produced monoclonal antibody (MoAb 1C11) reactive with 8/10 melanoma cell lines and 10/10 primary cultures of human melanocytes, neval cells, and melanomas. Immunoreactivity correlated to a certain extent with tyrosinase activity but not with melanin content. No crossreactivity was obtained with neuroblastoma, medulloblastoma, fibroblasts, keratinocytes, lymphoid cells, or murine melanomas. Purification of the antigen directly from cell lysates with a MoAb 1C11 CNBr-Sepharose affinity column gave a green-brown protein of 56 kDa with no detectable tyrosinase activity. This protein was therefore different from 60 kDa active tyrosinase, identified by enzyme activity and Western blotting with a MoAb derived previously (MoAb 5C12). Unlike 5C12, 1C11 reactivity was not destroyed by pretreatment of the antigen with periodate. Immunogold labelling showed that the 1C11-reactive antigen was associated with melanosomes, and there was close correlation between 5C12 and 1C11 reactivity in resistance to trypsin and in staining various melanocytic cell populations. MoAb 1C11 may therefore recognise a polypeptide epitope in a molecule closely linked to melanin biosynthesis.  相似文献   

13.
Mitotic progression is regulated by ubiquitin E3 ligase complexes to carefully orchestrate eukaryotic cell division. Here, we show that a relatively new E3 ligase component belonging to the SCF (Skip-Cullin1-F-box protein) E3 ligase family, SCFFBXL2, impairs cell proliferation by mediating cyclin D3 polyubiquitination and degradation. Both cyclin D3 and FBXL2 colocalize within the centrosome. FBXL2 overexpression led to G2/M-phase arrest in transformed epithelia, resulting in the appearance of supernumerary centrosomes, tetraploidy and nuclei where condensed chromosomes are arranged on circular monopolar spindles typical of mitotic arrest. RNAi-mediated knockdown of cyclin D3 recapitulated effects of SCFFBXL2 expression. SCFFBXL2 impaired the ability of cyclin D3 to associate with centrosomal assembly proteins [Aurora A, polo-like kinase 4 (Plk4), CDK11]. Thus, these results suggest a role for SCFFBXL2 in regulating the fidelity of cellular division.  相似文献   

14.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

15.
Cell Synchrony Techniques. I. A Comparison of Methods   总被引:3,自引:0,他引:3  
Abstract Selected cell synchrony techniques, as applied to asynchronous populations of Chinese hamster ovary (CHO) cells, have been compared. Aliquots from the same culture of exponentially growing cells were synchronized using mitotic selection, mitotic selection and hydroxyurea block, centrifugal elutriation, or an EPICS V cell sorter. Sorting of cells was achieved after staining cells with Hoechst 33258. After synchronization by the various methods the relative distribution of cells in G1 S, or G2+ M phases of the cell cycle was determined by flow cytometry. Fractions of synchronized cells obtained from each method were replated and allowed to progress through a second cell cycle. Mitotic selection gave rise to relatively pure and unperturbed early G1 phase cells. While cell synchrony rapidly dispersed with time, cells progressed through the cell cycle in 12 hr. Sorting with the EPICS V on the modal G1 peak yielded a relatively pure but heterogeneous G1 population (i.e. early to late G1). Again, synchrony dispersed with time, but cell-cycle progression required 14 hr. With centrifugal elutriation, several different cell populations synchronized throughout the cell cycle could be rapidly obtained with a purity comparable to mitotic selection and cell sorting. It was concluded that, either alone or in combination with blocking agents such as hydroxyurea, elutriation and mitotic selection were both excellent methods for synchronizing CHO cells. Cell sorting exhibited limitations in sample size and time required for synchronizing CHO cells. Its major advantage would be its ability to isolate cell populations unique with respect to selected cellular parameters.  相似文献   

16.
Nuclear extracts from Saccharomyces cerevisiae cells synchronized in S phase support the semiconservative replication of supercoiled plasmids in vitro. We examined the dependence of this reaction on the prereplicative complex that assembles at yeast origins and on S-phase kinases that trigger initiation in vivo. We found that replication in nuclear extracts initiates independently of the origin recognition complex (ORC), Cdc6p, and an autonomously replicating sequence (ARS) consensus. Nonetheless, quantitative density gradient analysis showed that S- and M-phase nuclear extracts consistently promote semiconservative DNA replication more efficiently than G1-phase extracts. The observed semiconservative replication is compromised in S-phase nuclear extracts deficient for the Cdk1 kinase (Cdc28p) but not in extracts deficient for the Cdc7p kinase. In a cdc4-1 G1-phase extract, which accumulates high levels of the specific Clb-Cdk1 inhibitor p40SIC1, very low levels of semiconservative DNA replication were detected. Recombinant Clb5-Cdc28 restores replication in a cdc28-4 S-phase extract yet fails to do so in the cdc4-1 G1-phase extract. In contrast, the addition of recombinant Xenopus CycB-Cdc2, which is not sensitive to inhibition by p40SIC1, restores efficient replication to both extracts. Our results suggest that in addition to its well-characterized role in regulating the origin-specific prereplication complex, the Clb-Cdk1 complex modulates the efficiency of the replication machinery itself.  相似文献   

17.
Murine hybridomas were generated to DNA/tight binding proteins complex isolated from the residual nuclear structure following a procedure analogous to that yielding "empty" shells of nuclear envelope. A monoclonal antibody designated 2A8 was selected because of its differential immunostaining of mitotic cells of a synchronized mouse fibroblast cell culture L-929. The target antigen was rendered insoluble by a sequence of extractions of isolated nuclei of diverse cell types with detergents, urea, DNase I and alkali thus reproducing some solubility properties of proteins constituting an operationally defined residual nuclear matrix. The cognate polypeptide was localized on a subset of proteins of Mr 58-65 kDa, 70 kDa in isolated fibroblast nuclear matrices. The functional implication of the antigen in mitosis-related disassembly-assembly process of the nuclear matrix/envelope was detected. At prophase the antibody decorated the nuclear periphery and nuclear envelope fixed inward filaments. A fibrous network of cytoplasmic localization was stained in metaphase. At anaphase the antigen was dispositioned into peripheral fibrogranular clusters of polar orientation predominantly on one side of the nucleus. Proceeding to telophase a spreading fluorescence was manifested over the entire contour of the nuclear periphery to delineate the reforming nucleus. By immunogold electron microscopy of interphase cells the antigen was identified as evenly distributed in chromatin and interchromatin regions. At initiation of chromosome condensation in mitosis the label was detected predominantly in the chromosomal area.  相似文献   

18.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

19.
The mixed-lineage kinases (MLK) are serine/threonine protein kinases that regulate mitogen-activated protein (MAP) kinase signaling pathways in response to extracellular signals. Recent studies indicate that MLK activity may promote neuronal cell death through activation of the c-Jun NH2-terminal kinase (JNK) family of MAP kinases. Thus, inhibitors of MLK activity may be clinically useful for delaying the progression of neurodegenerative diseases, such as Parkinson's. In proliferating non-neuronal cells, MLK may have the opposite effect of promoting cell proliferation. In the current studies we examined the requirement for MLK proteins in regulating cell proliferation by examining MLK function during G2 and M-phase of the cell cycle. The MLK inhibitor CEP-11004 prevented HeLa cell proliferation by delaying mitotic progression. Closer examination revealed that HeLa cells treated with CEP-11004 during G2-phase entered mitosis similar to untreated G2-phase cells. However, CEP-11004 treated cells failed to properly exit mitosis and arrested in a pro-metaphase state. Partial reversal of the CEP-11004 induced mitotic arrest could be achieved by overexpression of exogenous MLK3. The effects of CEP-11004 treatment on mitotic events included the inhibition of histone H3 phosphorylation during prophase and prior to nuclear envelope breakdown and the formation of aberrant mitotic spindles. These data indicate that MLK3 might be a unique target to selectively inhibit transformed cell proliferation by disrupting mitotic spindle formation resulting in mitotic arrest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号