首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Morphological and chemotaxonomic characterization of actinomycete strain TT2-4T isolated from peat swamp forest soil in Pattaloong Province, Thailand, clearly demonstrated that this strain belongs to the genus Micromonospora. 16S rDNA sequence analysis for the strain supported the assignment of the strain to the genus Micromonospora and the similarity value of sequences between this strain and the closely related species, Micromonospora mirobrigensis was 99.1%, and M. carbonacea and M. matsumotoense were 98.8%. The DNA-DNA hybridization result and some physiological and biochemical properties indicated that strain TT2-4T was distinguished from the phylogenetically closest relatives. Based on these genotypic and phenotypic data, strain TT2-4T merits a new species in the genus Micromonospora and the name Micromonospora siamensis sp. nov. is proposed for the strain. The type strain is strain TT2-4T (=JCM 12769T =PCU 266T =TISTR 1554T).  相似文献   

2.
A previous phylogenetic study on type strains of the genus Micromonospora and Micromonospora species bearing non-validly published names has pointed towards the species status of several of latter strains. Subsequent studies on morphological, cultural, chemotaxonomic, metabolic, and genomic properties, and on whole cell mass spectrometric analyses by matrix adsorbed laser desorption/ionization time-of-flight (MALDI-TOF) confirmed the species status, leading to the proposal of eight new Micromonospora species: Micromonospora citrea sp. nov., type strain DSM 43903T, Micromonospora echinaurantiaca sp. nov., type strain DSM 43904T, Micromonospora echinofusca sp. nov., type strain DSM 43913T, Micromonospora fulviviridis sp. nov., type strain DSM 43906T, Micromonospora inyonensis sp. nov., type strain DSM 46123T, Micromonospora peucetia sp. nov., type strain DSM 43363T, Micromonospora sagamiensis sp. nov., type strain DSM 43912T and Micromonospora viridifaciens sp. nov., type strain DSM 43909T.  相似文献   

3.
A novel actinomycete, designated strain NEAU-GRX11T, was isolated from muddy soil collected from a stream of Jinlong Mountain in Harbin, north China. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. The 16S rRNA gene sequence of strain NEAU-GRX11T showed highest similarity to Micromonospora zamorensis CR38T (99.2 %), Micromonospora saelicesensis Lupac 09T (99.0 %), Micromonospora chokoriensis 2-19/6T (98.7 %), Micromonospora coxensis 2-30-b/28T (98.5 %), Micromonospora aurantiaca ATCC 27029T (98.4 %) and Micromonospora lupini lupac 14NT (98.3 %). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-GRX11T was a member of the genus Micromonospora and supported the closest phylogenetic relationship to M. zamorensis CR38T, M. saelicesensis Lupac 09T, M. chokoriensis 2-19/6T and M. lupini lupac 14NT. A combination of DNA–DNA hybridization and some phenotypic characteristics indicated that the novel strain could be readily distinguished from these closest phylogenetic relatives. Therefore, it is proposed that NEAU-GRX11T represents a novel species of the genus Micromonospora, for which the name Micromonospora jinlongensis sp. nov. is proposed. The type strain is NEAU-GRX11T (=CGMCC 4.7103T=DSM 45876T).  相似文献   

4.
Two actinomycete strains, 2-19(6)(T) and 2-30-b(28)(T), which produced single, non-motile noduler to warty spore surfaces, were isolated from sandy soil in Chokoria, Cox's Bazar, Bangladesh. A polyphasic study was carried out to establish the taxonomic position of these strains. Morphological and chemotaxonomic characteristics of these strains coincided with those of the genus Micromonospora. Phylogenetic analysis using 16S rDNA sequences indicated that these strains should be classified in the genus Micromonospora. The 16S rDNA sequence of strain 2-19(6)(T )showed closest similarity to the type strains of M. mirobrigensis (98.9%) and M. carbonacea (98.8%), and the strain 2-30-b(28)(T) to the type strains of M. purpureochromogenes (99.4%), M. halophytica (99.3%) and M. aurantiaca (99.2%). Furthermore, a combination of DNA-DNA hybridization results and some differential physiological and biochemical properties indicated that these strains were distinguished from the phylogenetically closest relatives. These strains therefore represent two novel species, for which the name Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov. are proposed. The type strains are 2-19(6)(T) (=JCM 13247(T) =MTCC 8535(T)) and 2-30-b(28)(T) (=JCM 13248(T)=MTCC 8093(T)).  相似文献   

5.
The genus Micromonospora has been found in nodules of several legumes and some new species of this genus were isolated from these plant organs. In this study we analysed the taxonomic diversity of Micromonospora strains isolated from alfalfa nodules in Spain and Australia on the basis of three phylogenetic markers, the rrs and gyrB genes and 16S-23S intergenic spacer (ITS). The genome analysis of selected strains representative of different clusters or lineages found after rrs, gyrB and ITS analyses confirmed the results obtained with these phylogenetic markers. They showed that the analysed strains belong to at least 18 Micromonospora species including previously described ones, such as Micromonospora noduli, Micromonospora ureilytica, Micromonospora taraxaci, Micromonospora zamorensis, Micromonospora aurantiaca and Micromonospora tulbaghiae. Most of these strains belong to undescribed species of Micromonospora showing the high taxonomic diversity of strains from this genus inhabiting alfalfa nodules. Although Micromonospora strains are not able to induce the formation of these nodules, and it seems that they do not contribute to fix atmospheric nitrogen, they could play a role related with the mechanisms of plant growth promotion and pathogen protection presented by Micromonospora strains isolated from legume nodules.  相似文献   

6.
7.
Abstract A range of microorganisms was screened for new and high producer strains of trehalose phosphorylase (EC 2.4.1.64). Trehalose phosphorylase activity was found in cells of actinomycetes of the genera Actinomadura, Amycolata, Catellatospora, Kineosporia , and Nocardia . Among them, Catellatospora ferruginea showed the highest enzyme activity. Trehalose phosphorylase from C. ferruginea was able to catalyse both the phosphorolysis of trehalose into β-glucose 1-phosphate and d-glucose and the synthesis of trehalose from β-glucose 1-phosphate and d-glucose.  相似文献   

8.
A novel actinomycete, designated strain NEAU-MES19T, was isolated from pine forest soil in Heilongjiang province, China. A polyphasic study was carried out to establish the taxonomic position of this strain. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain NEAU-MES19T was most closely related to Micromonospora matsumotoense IMSNU 22003T. However, phylogenetic analysis based on the gyrB gene sequence showed that the isolate was more closely related to Micromonospora cremea CR30T than M. matsumotoense IMSNU 22003T. The low level of DNA–DNA relatedness allowed the isolate to be differentiated from M. matsumotoense IMSNU 22003T and M. cremea CR30T. Moreover, strain NEAU-MES19T could also be distinguished from its closest phylogenetic relatives by morphological, physiological and biochemical characteristics. Therefore, it is proposed that strain NEAU-MES19T represents a novel species of the genus Micromonospora, for which the name Micromonospora maoerensis sp. nov. is proposed. The type strain is NEAU-MES19T (=CGMCC 4.7091T = DSM 45884T).  相似文献   

9.
During a study looking for the isolation of new actinobacteria strains with potential for antibiotic production from deep marine sediment, three strains were collected with a morphology similar to the one described for the Micromonospora genus. A polyphasic study was designed to determine the taxonomic affiliation of the strains S2901T, S2903, and S2904. All the strains showed chemotaxonomic properties in line with their classification in the genus Micromonospora, meso-diaminopimelic acid in the wall peptidoglycan, a tetrahydrogenated menaquinone with nine isoprene units as major respiratory quinone, iso-C15:0 and iso-C16:0 as major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The 16S rRNA gene sequences of strain S2901T, S2903, and S2904 showed the highest similarity (99.2%) with the type strain of Micromonospora halophytica DSM 43171T, forming an independent branch in the phylogenetic gene tree. Their independent position was confirmed with gyrB gene and MLSA phylogenies. Whole genome sequences confirmed by digital DNA-DNA hybridization analysis that the isolates should be assigned to a new species within the genus Micromonospora for which the name Micromonospora globispora sp. nov. (S2901T, S2903 and S2904) is proposed.  相似文献   

10.
Data on the study of antibiotic production by the representatives of Micromonospora and the use of ion exchange resins for intensification of screening antibiotic-producing organisms among Micromonospora are presented. It was found that out of 172 strains of Micromonospora tested 92 (53.5 per cent) cultures produced antibiotics, 18 of which were active against gramnegative bacteria. The use of carboxylic ion exchange resins at early microbiological stages of the screening provided an increase in the frequency of finding broad spectrum antibiotics from 10.4 to 19.7 per cent.  相似文献   

11.
小单胞菌属(Micromonospora)为稀有放线菌,广泛分布在土壤、海洋和动植物中,其所产代谢产物不仅具有抗菌、抗肿瘤、抗HIV等多种生物活性,而且化学结构新颖多样。本文从化学结构分类、生物活性等方面对近几年已报道的小单胞菌属来源的重要天然产物做了简要综述,以期为小单胞菌天然产物的开发和应用奠定基础。  相似文献   

12.
A novel actinomycete, designated strain NEAU-zh8T, was isolated from a root of Viola philippica Car collected in China and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain NEAU-zh8T belongs to the genus Micromonospora, being most closely related to Micromonospora chokoriensis 2-9(6)T (99.9 %), Micromonospora saelicesensis Lupac 09T (99.3 %) and Micromonospora lupini Lupac 14NT (99.0 %). gyrB gene analysis also indicated that strain NEAU-zh8T should be assigned to the genus Micromonospora. The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-10(H4), MK-10(H2) and MK-10(H6). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C15:0, C16:0 and C17:0 10-methyl. A combination of DNA–DNA hybridization results and some physiological and biochemical properties indicated that strain NEAU-zh8T could be readily distinguished from the closest phylogenetic relatives. Therefore, it is proposed that strain NEAU-zh8T represents a novel Micromonospora species, for which the name Micromonospora violae sp. nov. is proposed. The type strain is NEAU-zh8T (=CGMCC 4.7102T=DSM 45888T).  相似文献   

13.
It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species.  相似文献   

14.
Xie QY  Qu Z  Lin HP  Li L  Hong K 《Antonie van Leeuwenhoek》2012,101(3):649-655
An actinomycete strain 232617T was isolated from a composite mangrove sediment sample collected in Haikou, China. Phylogenetic analysis of the 16S rRNA gene sequence of strain 232617T indicated the highest similarity with Micromonospora siamensis TT2-4T (99.05%), Micromonospora krabiensis A-2T (98.99%) and Micromonospora carbonacea DSM 43815T (98.91%). The gyrB gene sequence analysis also indicated that 232617T should be assigned to the genus Micromonospora. The cell wall contains meso-DAP and glycine. The major menaquinones were MK-10(H4) and MK-10(H6), with MK-9(H4) as minor components. The characteristic whole-cell sugars are xylose, arabinose and glucose. The phospholipid profile comprises phosphatidylethanolamine, diphosphatidlglycerol and phosphatidylinositol mannoside. The DNA G+C content is 71.5 mol%. Furthermore, a combination of DNA–DNA relatedness and some physiological and biochemical properties indicated that the novel strain could be readily distinguished from the closest related species. On the basis of these phenotypic and genotypic data, strain 232617T represents a novel species of the genus Micromonospora, for which the name Micromonospora haikouensis sp. nov. is proposed. The type strain is 232617T (= CCTCC AA 201112 T = DSM 45626 T).  相似文献   

15.
Strain 268506T was isolated from a root of Avicennia marina collected at mangrove forest in Wengchang, Hainan province, China. The 16S rRNA gene sequence of strain 268506T showed the highest similarity with Micromonospora equina Y22T (98.8 %) and Micromonospora olivasterospora DSM 43868T (98.7 %). In addition, gyrB gene phylogeny clearly showed strain 268506T should be assigned to the genus Micromonospora but different from any established Micromonospora species. The predominant menaquinones are MK-9(H8) and MK-9(H6). The major fatty acids are iso-C16:0, iso-C15:0 and anteiso-C17:0. The characteristic whole-cell sugars are xylose, mannose and arabinose. The cell wall contains meso-DAP and glycine. Phosphatidylinositol, diphosphatidylglycerol and phosphatidylethanolamine are the characteristic polar lipids. The DNA G+C content is 70.3 mol%. Some physiological and biochemical properties combined with low DNA–DNA relatedness indicated that the novel strain could be readily distinguished from the closest phylogenetic relatives. On the basis of these phenotypic and genotypic data, strain 268506T represents a novel species of the genus Micromonospora, for which the name Micromonospora avicenniae sp. nov. is proposed. The type strain is 268506T ( = CCTCC AA 2012010T = DSM 45758T).  相似文献   

16.
A filamentous actinomycete strain designated CR18T was isolated on humic acid agar from the rhizosphere of a Pisum sativum plant collected in Spain. This isolate was observed to grow optimally at 28 °C, pH 7.0 and in the presence of 5 % NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence indicated a close relationship with the type strains of Micromonospora chersina and Micromonospora endolithica. A further analysis based on a concatenated DNA sequence stretch of 4,523 bp that included partial sequences of the atpD, gyrB, recA, rpoB and 16S rRNA genes clearly differentiated the new strain from recognized Micromonospora species compared. DNA–DNA hybridization studies further supported the taxonomic position of strain CR18T as a novel genomic species. Chemotaxonomic analyses which included whole cell sugars, polar lipids, fatty acid profiles and menaquinone composition confirmed the affiliation of the new strain to the genus Micromonospora and also highlighted differences at the species level. These studies were finally complemented with an array of physiological tests to help differentiate between the new strain and its phylogenetic neighbours. Consequently, strain CR18T (= CECT 7890T = DSM 45598T) is proposed as the type strain of a novel species, Micromonospora halotolerans sp. nov.  相似文献   

17.
The family Arenaviridae consists of a unique genus (Arenavirus) that currently comprises 22 viral species, as recognized by the International Committee for Taxonomy of Viruses. Seven newly discovered represent putative new species. Here, our aims were to provide the most comprehensive phylogenetic analysis of members and putative members of the family Arenaviridae to date, and to investigate the genetic diversity observed within and between recognized species of New world arenaviruses to determine whether the genetic criteria previously proposed to define arenavirus species for Old world arenaviruses should be retained or are more widely applicable to the whole genus.  相似文献   

18.
The 16S rDNA-based phylogenetic analysis of the genus Clostridium has been completed by determination of the phylogenetic position of the type strains of 15 species and two non-validated species. These strains are members of phylogenetic clusters I, III, IV, V, IX, XIVa and XVIII as defined previously by Collins et al. [Int. J. Syst. Bacteriol. 44 (1994) 812-826]. Members of the genus Clostridium span a large evolutionary distance and the genus is not a phylogenetically coherent taxon but is intermixed with members of different genera, exhibiting a combination of Clostridium- and non-Clostridium-type properties. Anaerobacter polyendosporus, Syntrophococcus sucromutans and Acetivibrio multivorans also cluster within the radiation of Clostridium species. Although several taxa have been described for former Clostridium species with distinct phenotypic properties, the majority of Clostridium species, which are not members of the core cluster I, can at present not be reclassified as long as taxon-specific, phenotypic properties are not available.  相似文献   

19.
【目的】研究稀有放线菌——雷公藤内生小单孢菌(Micromonospora sp.M66)的次级代谢产物,为微生物药物或农用生物制剂开发提供结构多样的化合物资源。【方法】利用薄层层析、正(反)相硅胶柱层析、凝胶层析、液相色谱等技术对M66菌株中次级代谢产物进行分离纯化,利用波谱技术对化合物进行结构鉴定。【结果】最终分离纯化了7个单体化合物,结合质谱与核磁技术对这7个化合物进行了结构解析和鉴定,它们属于一组吲哚生物碱。化合物2是重要的植物生长调节剂,化合物3对淋巴细胞性白血病细胞P388、枯草芽孢杆菌和酿酒酵母的增殖有抑制作用,化合物6对金黄色葡萄球菌有很好的抑制作用。【结论】化合物3-7首次从小单胞菌中鉴定出来,表明该小单孢菌具有较强的利用吲哚或色氨酸合成次级代谢产物的能力和挖掘生物碱类药物的潜力。  相似文献   

20.
I Kawamoto  T Oka    T Nara 《Journal of bacteriology》1981,146(2):527-534
Cell walls of 19 Micromonospora species were analyzed for their components. All the cell walls had xylose and arabinose, but the presence of glucose, galactose, mannose, or rhamnose depended on the strain. Amino acids present in the walls consisted of glycine, glutamic acid, diaminopimelic acid, and alanine, in a molar ratio of approximately 1:1:1:0.6--0.8. 3-Hydroxydiaminopimelic acid, together with meso-diaminopimelic acid, was found in many species and was isolated from Micromonospora olivoasterospora to compare the color constant in an amino acid analyzer with that of meso-diaminopimelic acid. The cell walls of Micromonospora sagamiensis and M. olivoasterospora contained only D-alanine and not L-alanine. All species tested except Micromonospora globosa contained glycolate in an almost equimolar ratio to diaminopimelic acid in their cell walls. Among 45 strains of 12 genera examined, Actinoplanes, Ampullariella, Amorphosporangium, and Dactylosporangium species had a significant amount of glycolate in the whole cells. Based on these results, the primary structure of the peptidoglycan of Micromonospora is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号