首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Wnt signaling pathway is important in the formation of neural crest cells in many vertebrates, but the downstream targets of neural crest induction by Wnt are largely unknown. Here, we examined quantitative changes in gene expression regulated by Wnt-mediated neural crest induction using quantitative PCR (QPCR). Induction was recapitulated in vitro by adding soluble Wnt to intermediate neural plate tissue cultured in collagen, and induced versus control tissue were assayed using gene-specific primers at times corresponding to premigratory (18 and 24 h) or early (36 h) stages of crest migration. The results show that Wnt signaling up-regulates in a distinct temporal pattern the expression of several genes normally expressed in the dorsal neural tube (slug, Pax3, Msx1, FoxD3, cadherin 6B) at "premigratory" stages. While slug is maintained in early migrating crest cells, Pax3, FoxD3, Msx1 and cadherin 6B all are down-regulated by the start of migration. These results differ from the temporal profile of these genes in response to the addition of recombinant BMP4, where gene expression seems to be maintained. Interestingly, expression of rhoB is unchanged or even decreased in response to Wnt-mediated induction at all times examined, though it is up-regulated by BMP signals. The temporal QPCR profiles in our culture paradigm approximate in vivo expression patterns of these genes before neural crest migration, and are consistent with Wnt being an initial neural crest inducer with additional signals like BMP and other factors maintaining expression of these genes in vivo. Our results are the first to quantitatively describe changes in gene expression in response to a Wnt or BMP signal during transformation of a neural tube cell into a migratory neural crest cell.  相似文献   

4.
5.
6.
Long‐standing evidence gained from Pax6 mutant embryos pointed to an involvement of Pax6‐dependent cell adhesion molecules in patterning the central nervous system and, in particular, the retina. However, direct evidence for such pathways remained elusive. We here present direct evidence that knockdown of Pax6 expression by morpholino antisense molecules in Xenopus embryos and knockdown of maternal N‐cadherin (mNcad), N‐cadherin (Ncad) and neural cell adhesion molecule (NCAM) produce similar phenotypes. Eye formation is reduced and retinal lamination is heavily disorganized. In Pax6 knockdown embryos, the levels of mRNAs coding for these cell adhesion molecules are markedly reduced. Overexpression of Pax6 efficiently rescues the phenotype of Pax6 knockdown embryos and restores expression of these putative target genes. Rescue of Pax6‐deficiency by the putative target gene mNcad moderately rescues eye formation. The promoters of the genes coding for cell adhesion molecules contain several putative Pax6 binding sites, as determined by computer analysis. Chromatin immunoprecipitation shows that, in embryonic heads, Pax6 binds to promoter regions containing such predicted binding sites. Thus, several cell adhesion molecules are direct target genes of Pax6 and cooperate in retinal patterning. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 764–780, 2010  相似文献   

7.
8.
9.
10.
11.
12.
摘要 目的:探讨Pax3的过表达对Neuro-2a细胞中转录本的表达影响,初步分析Pax3对Neuro-2a细胞可能的转录调控作用。方法:反复冻融裂解法获取Pax3过表达腺病毒后将神经瘤母细胞系Neuro-2a传代培养,而后将Pax3过表达腺病毒和传代培养后的Neuro-2a细胞加入到同一培养皿中,蛋白质免疫印迹(Western blot)检测过表达Pax3蛋白的Neuro-2a细胞(Pax3过表达组)和对照组(NC组)Neuro-2a细胞的Pax3蛋白表达水平,实时荧光定量PCR(qRT-PCR)法检测Pax3过表达组和NC组Neuro-2a细胞的Pax3mRNA水平,Trizol法提取Pax3过表达组和NC组Neuro-2a细胞的总RNA,然后进行全转录本测序,最后将选出的有差异性的基因使用实时荧光定量PCR(qRT-PCR)验证。结果:与NC组相比,Pax3过表达组的Pax3蛋白和Pax3mRNA表达水平明显升高(P<0.05);Pax3过表达组中发现了1045个基因表达上调,1313个基因表达下调。通过qRT-PCR验证发现在Pax3过表达组中Nppb和Chrna5表达水平上升(P<0.05),Arhgap5、Rock1、Rif1、Brca2、Prkg2和Stag2表达水平下降(P<0.05)。结论:Pax3过表达腺病毒感染Neuro-2a细胞后,其蛋白和mRNA表达水平均升高,Rock1、Rif1和Stag2可能作为Pax3的下游靶点参与调控Neuro-2a细胞周期和干细胞特性。  相似文献   

13.
14.
15.
16.
Pax6 and Pax6(5a) are two isoforms of the evolutionary conserved Pax6 gene often co-expressed in specific stochiometric relationship in the brain and the eye during development. The Pax6(5a) protein differs from Pax6 by having a 14 amino acid insert in the paired domain, causing the two proteins to have different DNA binding specificities. Difference in functions during development is proven by the fact that mutations in the 14 amino acid insertion for Pax6(5a) give a slightly different eye phenotype than the one described for Pax6. Whereas quite many Pax6 target genes have been published during the last years, few Pax6(5a) specific target genes have been reported on. However, target genes identified by Pax6 knockout studies can probably be Pax6(5a) targets as well, since this isoform also will be affected by the knockout. In order to identify new Pax6 target genes, and to try to distinguish between genes regulated by Pax6 and Pax6(5a), we generated FlpIn-3T3 cell lines stably expressing Pax6 or Pax6(5a). RNA was harvested from these cell lines and used in gene expression microarrays where we identified a number of genes differentially regulated by Pax6 and Pax6(5a). A majority of these were associated with the extracellular region. By qPCR we verified that Ncam1, Ngef, Sphk1, Dkk3 and Crtap are Pax6(5a) specific target genes, while Tgfbi, Vegfa, EphB2, Klk8 and Edn1 were confirmed as Pax6 specific target genes. Nbl1, Ngfb and seven genes encoding different glycosyl transferases appeared to be regulated by both. Direct binding to the promoters of Crtap, Ctgf, Edn1, Dkk3, Pdgfb and Ngef was verified by ChIP. Furthermore, a change in morphology of the stably transfected Pax6 and Pax6(5a) cells was observed, and the Pax6 expressing cells were shown to have increased proliferation and migration capacities.  相似文献   

17.
Menin is a nuclear protein encoded by a tumor suppressor gene that is mutated in humans with multiple endocrine neoplasia type 1 (MEN1). Menin functions as a component of a histone methyltransferase complex that regulates expression of target genes including the cell cycle inhibitor p27kip1. Here, we show that menin plays a previously unappreciated and critical role in cranial neural crest. Tissue-specific inactivation of menin in Pax3- or Wnt1-expressing neural crest cells leads to perinatal death, cleft palate and other cranial bone defects, which are associated with a decrease in p27kip1 expression. Deletion of menin in Pax3-expressing somite precursors also produces patterning defects of rib formation. Thus, menin functions in vivo during osteogenesis and is required for palatogenesis, skeletal rib formation and perinatal viability.  相似文献   

18.
Molecular anatomy of placode development in Xenopus laevis   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号