共查询到20条相似文献,搜索用时 15 毫秒
1.
Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl 总被引:7,自引:0,他引:7
The effects of NaCl on changes in ammonium level and enzyme activities of ammonium assimilation in roots growth of rice (Oryza sativa L.) seedlings were investigated. NaCl was effective in inhibiting root growth and stimulated the accumulation of ammonium in roots. Accumulation of ammonium in roots preceded inhibition of root growth caused by NaCl. Both effects caused by NaCl are reversible. Exogenous ammonium chloride and methionine sulfoximine (MSO), which caused ammonium accumulation in roots, inhibited root growth of rice seedlings. NaCl decreased glutamine synthetase and glutamate synthase activities in roots, but increased glutamate dehydrogenase activity. The growth inhibition of roots by NaCl or MSO could be reversed by the addition of L-glutamic acid or L-glutamine. The current results suggest that disturbance of ammonium assimilation in roots may be involved in regulating root growth reduction caused by NaCl.Abbreviations GDH
glutamate dehydrogenase
- GOGAT
glutamate synthase
- GS
glutamine synthetase
- MSO
methionine sulfoximine 相似文献
2.
Naoto Inoue Teruo Arase Motoyuki Hagiwara Takahisa Amano Taiichi Hayashi Ryoichi Ikeda 《Ecological Research》1999,14(1):31-38
How plant seeds secure root penetration into soil to obtain good seedling establishment is one of the basic ecological problems. In this study, seminal root growth was investigated to clarify the cause of varietal difference of seedling establishment in direct seeding of rice in flooded paddy fields, with special reference to root tip rotation. In a field experiment, seedling establishment percentage had a weak correlation with seminal root elongation rate but was not correlated with apparent seedling weight in water, which has been reported to be the cause of floating seedlings resulting in poor seedling establishment. Root tip rotation was analyzed for indoor-grown seedlings using spectrum analysis: the maximum entropy method (MEM) was used. Maximum entropy method power spectrum analysis clarified that maximum MEM power density (practically corresponds to spiral angle) detected in the frequency range above 0.1 cycles mm-1 was highly and positively correlated to seedling establishment percentage in the field experiment. Maximum MEM power density in high correlation with seedling establishment was mostly found around frequencies of 0.2 cycles mm–1, which corresponded to 2.0–3.4 cycles of root tip rotation per day. From these results, root tip rotation (circumnutation) with a larger spiral angle was suggested to play an important role in the establishment of rice seedlings on flooded and very soft soil. A possible explanation for why a larger spiral angle was advantageous for seedling establishment is that if buoyancy and seedling weight are constant, a larger pushing force of the seminal root is available without causing floating of a seedling, due to the upward force being a reaction of the seminal root pushing force. 相似文献
3.
Nutrient uptake relationship to root characteristics of rice 总被引:1,自引:0,他引:1
Data on root parameters and distribution are important for an improved understanding of the factors influencing nutrient uptake
by a crop. Therefore, a study was conducted on a Crowley silt loam at the Rice Research and Extension Center near Stuttgart,
Arkansas to measure root growth and N, P and K uptake by three rice (Oryza sativa L.) cultivars at active tillering (36 days after emergence (DAE)), maximum tillering (41 DAE), 1.25 cm internode elongation
(55 DAE), booting (77 DAE) and heading (88 DAE). Soil-root core samples were taken to a depth of 40 cm after plant samples
were removed, sectioned into 5 cm intervals, roots were washed from soil and root lengths, dry weights and radii were measured.
Root parameters were significantly affected by the soil depth × growth stage interaction. In addition, only root radius was
affected by cultivar. At the 0- to 5-cm soil depth, root length density ranged from 38 to 93 cm cm-3 throughout the growing season and decreased with depth to about 2 cm cm-3 in the 35- to 40-cm depth increment. The increase in root length measured with each succeeding growth stage in each soil
horizon also resulted in increased root surface area, hence providing more exposed area for nutrient uptake. About 90% of
the total root length was found in the 0- to 20-cm soil depth throughout the season. Average root radius measured in the 0-
to 5-cm and 35- to 40-cm depth increments ranged from 0.012 to 0.013 cm and 0.004 to 0.005 cm, respectively throughout the
season. Total nutrient uptake by rice differed among cultivars only during vegetative growth. Differences in total nutrient
uptake among the cultivars in the field appear to be related to absorption kinetics of the cultivars measured in a growth
chamber study.
Published with permission of the Arkansas Agricultural Experiment Station. 相似文献
4.
水稻根系响应镉胁迫的蛋白质差异表达 总被引:7,自引:0,他引:7
为探讨水稻根系对镉胁迫的分子生理响应,以抗镉水稻PI312777和镉敏感水稻IR24为材料,设置Cd~(2+)浓度为0、50和100μmol/L的水培试验,处理7 d后分析了水稻根系的蛋白质差异表达。结果表明,在镉胁迫下水稻PI312777和IR24根系有18个蛋白质发生了差异表达,其中的12个得到MALDI-TOF/MS鉴定。这些鉴定的蛋白功能可分四类:(1)与活性氧(ROS)胁迫相关的过氧化物酶(POD)、蛋氨酸腺苷转移酶(MAT)、类萌发素蛋白前体;(2)与谷胱甘肽(GSH)合成相关的S-腺苷甲硫氨酸合成酶(SAMS)、谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH);(3)与逆境胁迫相关的ABA胁迫诱导蛋白含HVA22域蛋白、ABA-胁迫-成熟诱导蛋白5(ASR5);(4)与细胞分裂调控相关的GTP结合核蛋白Ran-2。镉胁迫下SAMS和GTP结合核蛋白Ran-2在两种水稻根系均发生上调表达;MAT、POD、类萌发素蛋白前体和GS发生下调表达;依赖NADP-GDH、GDH和磷酸甘油酸变位酶在IR24根部均发生下调表达,在PI312777根部仅在100μmol/L Cd~(2+)处理发生下调表达;含HVA22域蛋白在PI312777根部上调表达,在IR24根部发生下调表达;ASR5在PI312777根部上调表达,在IR24根部的表达无显著差异;100μmol/L Cd~(2+)胁迫下60S酸性核糖体蛋白P0在水稻PI312777根部表达下调,在IR24根部表达上调。可见,镉胁迫使水稻根部ROS增加,形成氧化胁迫反应,造成毒害作用,而水稻根通过调节SAMS和GS提高GSH合成降低镉毒害。ASR5和HVA22蛋白等逆境胁迫蛋白的表达差异则是水稻品种间抗性差异的重要原因之一。 相似文献
5.
The root system of a rice plant (Oryza sativa L.) consists of numerous nodal roots and their laterals. The growth direction of these nodal roots affects the spatial distribution of the root system in soil, which seems to relate to yield and lodging resistance. The growth angle of a nodal root varies with the type and timing of emergence of the nodal root. The body of a rice plant can be recognized as an integrated set of shoot units, each unit consisting of an internode with a leaf and several roots. Nodal roots formed at the apical part of a shoot unit often elongate horizontally, whereas those formed at the basal part of the shoot unit show various growth directions depending on both the growth stages of the plant and the environmental conditions. Moreover, nodal roots that emerge from the most basal shoot unit of a tiller are usually thick and grow downwards. External factors such as planting density and nitrogen application affect the growth direction of nodal roots, probably partly because of the changing tillering pattern of the shoot. In addition to the growth angle of nodal roots, size of nodal roots may be another important factor determining the spatial distribution of the root system in soil. 相似文献
6.
Cell wall peroxidase activity,hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings 总被引:13,自引:0,他引:13
The changes in cell-wall peroxidase (POD) activity and H2O2 level in roots of NaCl-stressed rice seedlings and their correlation with root growth were investigated. Increasing concentrations of NaCl from 50 to 150 mM progressively reduced root growth and increased ionically bound cell-wall POD activity. NaCl had no effect on covalently bound cell-wall POD activities. The reduction of root growth by NaCl is closely correlated with the increase in H2O2 level. Exogenous H2O2 was found to inhibit root growth of rice seedlings. Since ammonium and proline accumulation are associated with root growth inhibition caused by NaCl, we determined the effects of NH4Cl or proline on root growth, cell-wall POD activity and H2O2level in roots. External application of NH4Cl or proline markedly inhibited root growth, increased cell-wall POD activity and increased H2O2 level in roots of rice seedlings in the absence of NaCl. An increase in cell-wall POD activity and H2O2 level preceded inhibition of root growth caused by NaCl, NH4Cl or proline. NaCl or proline treatment also increased NADH-POD and diamine oxidase (DAO) activities in roots of rice seedlings, suggesting that NADH-POD and DAO contribute to the H2O2 generation in the cell wall of NaCl- or proline-treated roots. NH4Cl treatment increased NADH-POD activity but had no effect on DAO activity, suggesting that NADH-POD but not DAO is responsible for H2O2 generation in cell wall of NH4Cl-treated roots. 相似文献
7.
Effect of soil mechanical impedance on root growth of two rice varieties under field drought stress 总被引:1,自引:1,他引:1
Two upland rice varieties, Azucena and Bala, were screened for root growth under droughted and irrigated treatments in two field sites at the West Africa Rice Development Association (WARDA) experimental farm, Côte d’Ivoire, during the dry season of 1999/2000. The sites were chosen to represent contrasting soil profile penetration resistance (PR) characteristics on upland sites, although both were relatively impeding. The number of nodal root axes per unit area passing through horizontal transects (root density) was counted at 35, 56, 77 and 98 days after sowing (DAS) at 10 cm depth intervals. Azucena consistently maintained a greater root density than Bala and a greater proportion of Azucena roots grew to 30 cm depth (22.7% vs. 8.4% at 77 DAS). There was little detectable effect of water regime on root distribution but evidence of lower root numbers at depths below 20 cm in the higher PR site was revealed. A site by variety by soil depth interaction suggests that Azucena roots are more strongly affected by very high PR than those of Bala. PR between 0–30 cm depth increased greatly with decreasing soil water content during the drought as the soil dried. This increase is likely to have prevented or greatly impaired further nodal root growth within this layer. At 40 cm depth, PR was high (3–4 MPa) but did not increase during the drought. At this depth root growth rate was likely to be greatly reduced despite the availability of water. These results demonstrate that varietal differences in root morphology characterised in the laboratory can be also detected in impeding field soils as differences in the density of roots at depth. Relatively poor root growth in these fields in the absence of drought was probably due to the high mechanical impedance and/or the physiological stress of the plants in the dry season. Our results indicate that high mechanical impedance was a more fundamental constraint on root growth than soil water availability during the drought. Thus, varietal differences in root penetration ability might be very important for drought avoidance in soils of this type. 相似文献
8.
9.
10.
Aluminum (Al) inhibits root growth in acidic soil, but the site of action of Al remains unclear. We investigated whether the
rate of Al accumulation correlates to Al-indeced rapid root growth inhibition in rice seedlings (Oryza sativa L. cv. Youngnam). Growth of roots was significantly inhibited by 100 μM AICI3, as early as 1 h after the treatment. The inhibition of root growth was strongly dependent on Al concentration (l50 = 20 (μM) and Al-exposure time (l50 = 23 min at 25 μM Al) in a solution of 10 mM KCI and 1 mM CaCl2 buffered by 10 mM Mes/KOH (pH 4.5). Using ICPES, massive uptake of Al by roots was observed even at 15 min treatment of 25
μM Al. The kinetics of Al uptake by the roots closely corresponded to the inhibitory effects of Al on root growth. When the
roots of seedlings were exposed to 50 (μM Al for 1 h, then sectioned and stained with hematoxylin, all cell types of the roots
showed the presence of Al in the cytoplasm. These results indicate that Al was rapidly taken up into the root cells and thereby
reduced root growth. 相似文献
11.
农田土壤镉(Cd)污染日益严重,导致稻米Cd含量超标事件频繁出现,使粮食安全问题备受关注。因此,合理利用Cd污染农田、降低水稻籽粒Cd含量成为亟待解决的问题。籽粒Cd低积累水稻雅恢2816的地上部具有较强的Cd积累能力,研究旨在弄清其地上部Cd积累能力的遗传稳定性,进一步揭示控制该性状的遗传基础,为利用分子标记辅助选育地上部Cd富集能力强、籽粒Cd安全的水稻提供途径。以水稻雅恢2816和3个不同品种水稻分别组配获得的F1为研究对象,分析地上部Cd积累相关性状的杂种优势。进一步以优势组合C268A/雅恢2816构建F2作图群体,对地上部Cd积累相关性状进行QTL定位分析。结果表明:(1) F1地上部Cd积累相关性状杂种优势明显,遗传稳定性强。地上部Cd积累相关性状属数量性状,F2中/超亲分离现象明显。(2)在第4、6号染色体上共挖掘到1个控制水稻地上部生物量和3个控制地上部Cd积累量的QTL位点,分别为qSB-6、qSCdA-4、qSCdA-6-1和qSCdA-6-2,表型贡献率为10.6%—14.4%,且增效等位基因均来自雅恢2816。(3)地上部Cd积累量与地上部生物量、Cd含量,根、糙米的生物量、Cd积累量,根-地上部转移系数均呈极显著正相关,与地上部-籽粒转移系数呈极显著负相关,存在4个QTL集簇区Cl-4-1、Cl-6-1、Cl-6-2和Cl-6-3。(4)区间marker 04171-marker 04197控制着地上部生物量和Cd积累量,与控制糙米Cd含量的QTL不重叠。研究表明:籽粒Cd低积累水稻雅恢2816携带控制地上部Cd高积累的等位基因,可在世代间稳定遗传,QTL位点qSCdA-4、qSCdA-6-1、qSCdA-6-2是控制该性状的重要遗传基础,可为分子标记辅助选育地上部Cd高积累、籽粒Cd低积累水稻提供理论依据。 相似文献
12.
Cd induced changes in proline level and peroxidase activity in roots of rice seedlings 总被引:5,自引:0,他引:5
The effects of Cd on changes in proline level and peroxidase activity in roots of rice seedlings were investigated. CdCl2 was effective in inhibiting root growth and in accumulating proline in roots. The inhibition of root growth by Cd is reversible. The reduction of root growth induced by Cd is closely associated with accumulation of proline in roots. External application of proline markedly inhibited root growth of rice seedlings in the absence of Cd. Ionically bound, but not soluble, peroxidase activity in roots was increased by CdCl2. Proline treatment also resulted in an increase in ionically bound peroxidase activity in roots. The relationship between growth inhibition of roots induced by Cd and changes of proline level and peroxidase activity is discussed.Abbreviations POX
peroxidase 相似文献
13.
Roots are a vital organ for absorbing soil moisture and nutrients and influence drought resistance. The identification of quantitative trait loci (QTLs) with molecular markers may allow the estimation of parameters of genetic architecture and improve root traits by molecular marker-assisted selection (MAS). A mapping population of 120 recombinant inbred lines (RILs) derived from a cross between japonica upland rice 'IRAT109' and paddy rice 'Yuefu' was used for mapping QTLs of developmental root traits. All plant material was grown in PVC-pipe. Basal root thickness (BRT), root number (RN), maximum root length (MRL), root fresh weight (RFW), root dry weight (RDW) and root volume (RV) were phenotyped at the seedling (I), tillering (II), heading (III), grain filling (IV) and mature (V) stages, respectively. Phenotypic correlations showed that BRT was positively correlated to MRL at the majority of stages, but not correlated with RN. MRL was not correlated to RN except at the seedling stage. BRT, MRL and RN were positively correlated to RFW, RDW and RV at all growth stages. QTL analysis was performed using QTLMapper 1.6 to partition the genetic components into additive-effect QTLs, epistatic QTLs and QTL-by-year interactions (Q x E) effect. The results indicated that the additive effects played a major role for BRT, RN and MRL, while for RFW, RDW and RV the epistatic effects showed an important action and Q x E effect also played important roles in controlling root traits. A total of 84 additive-effect QTLs and 86 pairs of epistatic QTLs were detected for the six root traits at five stages. Only 12 additive QTLs were expressed in at least two stages. This indicated that the majority of QTLs were developmental stage specific. Two main effect QTLs, brt9a and brt9b, were detected at the heading stage and explained 19% and 10% of the total phenotypic variation in BRT without any influence from the environment. These QTLs can be used in breeding programs for improving root traits. 相似文献
14.
Field uniformity of the Japonica rice region of Taiwan as estimated by relative genetic contribution
Maw Sun Lin 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1991,83(1):115-118
Summary Despite the concerns for genetic vulnerability that were raised in the 1970s, the field uniformity of the Japonica rice (Oryza sativa L.) region in Taiwan has increased since 1980 with over 82% of the cultivated areas being covered by as few as three varieties and over half of this hectarage by a single variety. Japanese plant introductions are the major ancestral contributors of genetic constituents for varieties released in Taiwan. The main constitution of the genetic base present in the field has changed little since 1971. Six common ancestors comprised 60%, 55%, 78%, and 77% of the genetic constituents present in the field in 1971, 1976, 1981, and 1986, respectively. These estimates revealed that at least 55% of the genes utilized in the last 15 years came from the same sources. Recent efforts in introducing new germ plasm sources to variety development should continue to alleviate the possible crop loss due to continuous monoculture.Research supported by National Science Council (NSC 78-0211-B005-14) 相似文献
15.
Iron nutrition affects cadmium accumulation and toxicity in rice plants 总被引:12,自引:0,他引:12
Guosheng Shao Mingxue Chen Weixia Wang Renxiang Mou Guoping Zhang 《Plant Growth Regulation》2007,53(1):33-42
The effect of iron (Fe) nutrition on cadmium (Cd) toxicity and accumulation in rice plants was studied using a hydroponic
system. The inhibitory effect of Cd on plant growth and chlorophyll content (SPAD value) was dependent on Fe level and the
genotype. Malondialdehyde (MDA) content in leaves and roots was not much affected by an increased Cd stress at 0.171 mg l−1 Fe, but it showed a rapid increase when the plants were exposed to moderate (1.89 mg l−1) and high (16.8 mg l−1) Fe levels. High Fe nutrition caused a marked reduction in Cd content in both leaves and roots. Fe content in plants was
lower at high Cd (5.0 μM) stress than at low Cd (<1.0 μM) stress. Cd stress increased both superoxide dismutase (SOD) and
peroxidase (POD) activities at low and moderate Fe levels. However, with high Fe level, it increased the POD activity, but
reduced the SOD activity. Our results substantiate the hypothesis that cell membrane-bound iron transporter (carrier) involved
in high-affinity iron transport systems can also transport Cd, and both these ions may compete for this common carrier. The
study further showed that there were significant correlations between MDA and Fe contents in leaves and roots of rice plants.
It is suggested that the occurrence of oxidative stress in plants exposed to Cd stress is mediated by Fe nutrition. The present
results also show that Cd stress affects the uptake of Cu and Zn. 相似文献
16.
Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium 总被引:11,自引:0,他引:11
Changes in protein and amino acid contents in Cd-treated rice (Oryza sativa L.) seedlings of two cultivars were investigated. By assessing the decrease in chlorophyll content in the second leaves as an indicator of Cd toxicity, it was seen that cv. Tainung 67 (TNG 67) seedlings were apparently more tolerant to Cd than cv. Taichung Native 1 (TN 1). Following treatment with CdCl2, protein content decreased with a progressive and substantial increase of protease activity and total amino acids in TN 1, but not in TNG 67. The patterns of individual amino acids in Cd-treated leaves of both cultivars were examined and, only in cv. TN 1 a substantial increase in the content of all amino acids analysed, except for methione, was recorded. The role of these changes in endogenous amino acids in Cd toxicity of TN 1 leaves is discussed. 相似文献
17.
Foreign DNA introgression caused heritable cytosine demethylation in ribosomal RNA genes of rice 总被引:2,自引:0,他引:2
Bao Liu Yuzhu Dong Zhenlan Liu Mengyuan He Yingdian Wang 《Acta Physiologiae Plantarum》2001,23(4):415-420
Significant cytosine demethylation in ribosomal RNA genes (18S or 25S) were detected in all four studied rice lines containing
introgressed DNA from wild rice, Zizania latifolia Griseb. In each line, the changed RFLP (restriction fragment length polymorphism) patterns produced with the methylation-sensitive
enzyme (HpaII) were identical between two randomly selected individual plants both within and between generations. This indicates that
the methylation changes are non-random and stably inherited. Cytosine demethylation in ribosomal RNA genes could be a major
cause for the drastically altered phenotypic variations observed in the introgression lines. 相似文献
18.
19.
铜绿假单胞菌对镉胁迫苗期水稻根系活力及叶片生理特性的影响 总被引:1,自引:0,他引:1
为揭示耐镉铜绿假单胞菌缓解镉胁迫水稻的生理效应,以无镉处理为对照,通过添加菌液、空载体、菌剂及20μmol·L^-1 Cd进行水培试验,分析了菌株对苗期水稻根系活力及叶片生理特性的影响.结果表明:镉胁迫显著抑制了水稻的根系活力,降低了叶片光合效率、抗氧化酶活性及可溶性蛋白、类黄酮与总酚含量,提高了叶片丙二醛(MDA)和超氧阴离子(O2-)含量.与镉处理相比,添加菌液、菌剂处理的水稻根系活力分别提高了36.1%~42.5%、49.4%~53.0%;叶片净光合速率提高了118.5%~147.1%、137.6%~156.9%;可溶性蛋白含量提高了37.0%~49.3%、37.7%~72.6%.菌剂处理的水稻叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性分别比Cd处理提高了36.9%~42.6%、82.7%~92.6%、43.3%~52.2%,菌液处理的SOD、POD、CAT则分别比Cd处理提高了25.8%~36.6%、40.9%~55.9%、24.0%~29.2%,菌剂对水稻叶片抗氧化酶的促进效应显著高于菌液;菌剂、菌液处理的水稻叶片MDA含量分别比Cd处理降低了44.8%~54.7%、29.4%~41.9%;O2-含量减少了9.9%~10.2%、3.0%~7.1%;菌剂处理后类黄酮、总酚含量分别比Cd处理提高了125.4%~135.7%、100.8%~119.4%;菌液处理后则分别提高了139.4%~146.7%、115.0%~134.7%.可见,铜绿假单胞菌及其菌剂通过提高苗期水稻根系活力、光合作用促进了苗期水稻的生长.铜绿假单胞菌通过增强水稻抗氧化酶活性、提高类黄酮和总酚等抗氧化物质含量,表现出显著的缓解镉胁迫效应. 相似文献
20.
The effect of selenium on sulfur uptake by barley and rice 总被引:9,自引:1,他引:8
Because of their chemical and physical similarities, plant uptake of S and Se are closely related. Barley (Hordeum vulgare L.) and rice (Oryza sativa L.) were grown in greenhouse solution culture to examine the synergistic interactions between SO4 and Se6+ in plant uptake. In the presence of low concentrations of solution SO4, shoot and root yields were decreased with additions of Se6+. However, when SO4 was present in elevated concentrations, no Se-induced yield reduction occurred. A synergistic interaction between SO4 and Se6+ caused an increase in the shoot S concentrations with increasing concentrations of Se6+ at low SO4 solution concentrations. At elevated SO4 concentrations, no synergism was osberved. Selenium had a lesser effect on the S concentration in plant roots. 相似文献