首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The responses of macrophages to Bacillus anthracis infection are important for the survival of the host, since macrophages are required for the germination of B. anthracis spores in lymph nodes, and macrophage death exacerbates anthrax lethal toxin (LeTx)-induced organ collapse. To elucidate the mechanism of macrophage cell death induced by LeTx, we performed a genetic screen to search for genes associated with LeTx-induced macrophage cell death. RAW 264.7 cells, a macrophage-like cell line sensitive to LeTx-induced death, were randomly mutated and LeTx-resistant mutant clones were selected. AMP deaminase 3 (AMPD3), an enzyme that converts AMP to IMP, was identified to be mutated in one of the resistant clones. The requirement of AMPD3 in LeTx-induced cell death of RAW 264.7 cells was confirmed by the restoration of LeTx sensitivity with ectopic reconstitution of AMPD3 expression. AMPD3 deficiency does not affect LeTx entering cells and the cleavage of mitogen-activated protein kinase kinase (MKK) by lethal factor inside cells, but does impair an unknown downstream event that is linked to cell death. Our data provides new information regarding LeTx-induced macrophage death and suggests that there is a key regulatory site downstream of or parallel to MKK cleavage that controls the cell death in LeTx-treated macrophages.  相似文献   

2.
Anthrax lethal toxin (LeTx) is a virulence factor of Bacilillus anthracis that is a bivalent toxin, containing lethal factor (LF) and protective Ag proteins, which causes cytotoxicity and altered macrophage function. LeTx exposure results in early K(+) efflux from macrophages associated with caspase-1 activation and increased IL-1β release. The mechanism of this toxin-induced K(+) efflux is unknown. The goals of the current study were to determine whether LeTx-induced K(+) efflux from macrophages is mediated by toxin effects on specific K(+) channels and whether altered K(+)-channel activity is involved in LeTx-induced IL-1β release. Exposure of macrophages to LeTx induced a significant increase in the activities of two types of K(+) channels that have been identified in mouse macrophages: Ba(2+)-sensitive inwardly rectifying K(+) (Kir) channels and 4-aminopyridine-sensitive outwardly rectifying voltage-gated K(+) (Kv) channels. LeTx enhancement of both Kir and Kv required the proteolytic activity of LF, because exposure of macrophages to a mutant LF-protein (LF(E687C)) combined with protective Ag protein had no effect on the currents. Furthermore, blocking Kir and Kv channels significantly decreased LeTx-induced release of IL-1β. In addition, retroviral transduction of macrophages with wild-type Kir enhanced LeTx-induced release of IL-1β, whereas transduction of dominant-negative Kir blocked LeTx-induced release of IL-1β. Activation of caspase-1 was not required for LeTx-induced activation of either of the K(+) channels. These data indicate that a major mechanism through which LeTx stimulates macrophages to release IL-1β involves an LF-protease effect that enhances Kir and Kv channel function during toxin stimulation.  相似文献   

3.
Macrophages from different inbred mouse strains exhibit striking differences in their sensitivity to anthrax lethal toxin (LeTx)-induced cytolysis. Although LeTx-induced cytolysis of macrophages plays an important role in the outcome of anthrax infection, the sensitivity of macrophages in vitro does not correlate with in vivo susceptibility to infection of Bacillus anthracis. This divergence suggests that additional factors other than LeTx are involved in the cytolysis of LeTx-resistant macrophages in vivo. We found that LeTx-resistant macrophages became sensitive to LeTx-induced cytolysis when these cells were activated by bacterial components. Tumor necrosis factor-alpha induced by bacterial components was a key factor that cooperated with LeTx in inducing LeTx-resistant macrophage death. Tumor necrosis factor-alpha/LeTx-induced death of LeTx-resistant macrophages was dependent on mTor (mammalian target of rapamycin), but independent of caspases. Our data indicate that host responses to anthrax infection contribute to cytolysis of LeTx- resistant macrophages.  相似文献   

4.
The molecular mechanism of cytotoxic effect exerted by the lethal toxin (LeTx) of Bacillus anthracis is not well understood. In the present study, using primary culture of mouse peritoneal macrophages, we have investigated possible cytotoxic mechanisms. LeTx was not found to induce high levels of nitric oxide (NO) production for NO-mediated toxicity. Fragmentation of DNA, a biochemical marker of apoptosis, was not observed in LeTx-treated cells. Pretreatment of cells with antioxidants such as melatonin and dehydroepiandrosterone (DHEA) did not protect the LeTx-induced cytotoxicity. However, addition of phospholipase A2 (PLA2) inhibitors (quinacrine, p-bromophenacyl bromide, manoalide, butacaine) to the culture medium resulted in the inhibition of cytotoxicity of LeTx in a dose-dependent manner. LeTx-induced cytotoxicity was also inhibited by the tyrosine-specific protein kinase inhibitor genistein, but not by the protein kinase C inhibitors staurosporine or H-7. The results of these studies indicate a role for PLA2 and protein kinase in the cytotoxic mechanism of macrophages by anthrax lethal toxin.  相似文献   

5.
In this study, we attempt to target the mitogen-activated protein kinase (MAPK) pathway in acute myeloid leukemia (AML) cells using a recombinant anthrax lethal toxin (LeTx). LeTx consists of protective antigen (PrAg) and lethal factor (LF). PrAg binds cells, is cleaved by furin, oligomerizes, binds three to four molecules of LF, and undergoes endocytosis, releasing LF into the cytosol. LF cleaves MAPK kinases, inhibiting the MAPK pathway. We tested potency of LeTx on a panel of 11 human AML cell lines. Seven cell lines showed cytotoxic responses to LeTx. Cytotoxicity of LeTx was mimicked by the specific mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 (MEK1/2) inhibitor U0126, indicating that LeTx-induced cell death is mediated through the MEK1/2-extracellular signal-regulated kinase (ERK1/2) branch of the MAPK pathway. The four LeTx-resistant cell lines were sensitive to the phosphatidylinositol 3-kinase inhibitor LY294002. Co-treatment of AML cells with both LeTx and LY294002 did not lead to increased sensitivity, showing a lack of additive/synergistic effects when both pathways are inhibited. Flow cytometry analysis of MAPK pathway activation revealed the presence of phospho-ERK1/2 only in LeTx-sensitive cells. Staining for Annexin V/propidium iodide and active caspases showed an increase in double-positive cells and the absence of caspase activation following treatment, indicating that LeTx-induced cell death is caspase-independent and nonapoptotic. We have shown that a majority of AML cell lines are sensitive to the LF-mediated inhibition of the MAPK pathway. Furthermore, we have demonstrated that LeTx-induced cytotoxicity in AML cells is nonapoptotic and dependent on phospho-ERK1/2 levels.  相似文献   

6.
Cellular adaptation to different stresses related to survival and function has been demonstrated in several cell types. Anthrax lethal toxin (LeTx) induces rapid cell death, termed “pyroptosis,” by activating NLRP1b/caspase-1 in murine macrophages. We and others (S. D. Ha et al., J. Biol. Chem. 282:26275-26283, 2007; I. I. Salles et al., Proc. Natl. Acad. Sci. U. S. A. 100:12426 –12431, 2003) have shown that RAW264.7 cells preexposed to sublethal doses of LeTx become resistant to subsequent high cytolytic doses of LeTx, termed toxin-induced resistance (TIR). To date, the cellular mechanisms of pyroptosis and TIR are largely unknown. We found that LeTx caused NLRP1b/caspase-1-dependent mitochondrial dysfunction, including hyperpolarization and generation of reactive oxygen species, which was distinct from that induced by stimuli such as NLRP3-activating ATP. In TIR cells, these mitochondrial events were not detected, although caspase-1 was activated, in response to LeTx. We identified that downregulation of the late endosomal cholesterol-transferring protein MLN64 in TIR cells was involved in TIR. The downregulation of MLN64 in TIR cells was at least in part due to DNA methyltransferase 1-mediated DNA methylation. In wild-type RAW264.7 cells and primary bone marrow-derived macrophages, LeTx caused NLRP1b/caspase-1-dependent mitochondrial translocation of MLN64, resulting in cholesterol enrichment, membrane hyperpolarization, reactive oxygen species (ROS) generation, and depletion of free glutathione (GSH). This study demonstrates for the first time that MLN64 plays a key role in LeTx/caspase-1-induced mitochondrial dysfunction.  相似文献   

7.
Lethal toxin actions and their consequences   总被引:2,自引:0,他引:2  
After entry of infectious anthrax spores into the body, host-specific signals induce spore germination, outgrowth of vegetative bacilli and the expression of lethal toxin and other virulence factors. Anthrax lethal toxin (LeTx) is a virulence factor responsible for the major pathologies seen during systemic anthrax infections. Injection of sterile LeTx into test animals mimics the shock and sudden death seen during active bacterial infections. Once large levels of LeTx are produced within the body, destruction of bacteria by administration of antibiotics is usually unsuccessful. The LeTx is believed to be secreted into the bloodstream where it circulates freely throughout the body and binds and enters host cells. Once in the cytoplasm, the lethal factor acts as a zinc-metalloprotease disrupting normal homoeostatic functions. Macrophages are a uniquely sensitive cell type that seem to be vital global mediators of toxin-induced pathologies. Removal of macrophages from mice renders them insensitive to LeTx challenge. Low levels of lethal toxin induce macrophage production, in vitro, of the shock-inducing cytokines TNF and Il-1beta. Higher levels of LeTx cause over-production of reactive oxygen intermediates, bursting of macrophages and release of mediators of shock. We believe that agents capable of blocking key steps of the lethal toxin cascade may prove useful in combating anthrax pathologies.  相似文献   

8.
9.
BACKGROUND: Inbred mouse strains exhibit striking differences in the susceptibility of their macrophages to the effects of anthrax lethal toxin (LeTx). Previous data has shown that this difference in susceptibility lies downstream of toxin entry into macrophages. A locus controlling this phenotype, called Ltxs1, has been mapped to chromosome 11, but the responsible gene has not been identified. RESULTS: Here, we report the identification of the Ltxs1 gene as Kif1C, which encodes a kinesin-like motor protein of the UNC104 subfamily. Kif1C is the only gene in the Ltxs1 interval exhibiting polymorphisms between susceptible and resistant strains. Multiple alleles of Kif1C determine the susceptibility or resistance of cultured mouse macrophages to LeTx. Treatment of resistant macrophages with brefeldin-A (which alters the cellular localization of Kif1C) induces susceptibility to LeTx, while ectopic expression of a resistance allele of Kif1C in susceptible macrophages causes a 4-fold increase in the number of cells surviving LeTx treatment. We also show that cleavage of map kinase kinase 3, a target of LeTx proteolysis, occurs in resistant cells. CONCLUSIONS: We conclude that mutations in Kif1C are responsible for the differences in the susceptibility of inbred mouse macrophages to LeTx and that proper Kif1C function is required for LeTx resistance. Since the LeTx-mediated proteolysis of map kinase kinase 3 occurs even in resistant cells, Kif1C does not affect cellular entry or processing of LeTx and likely influences events occurring later in the intoxication pathway.  相似文献   

10.
Ischemia and reperfusion (I/R) injury is associated with extensive loss of cardiac myocytes. Bnip3 is a mitochondrial pro-apoptotic Bcl-2 protein which is expressed in the adult myocardium. To investigate if Bnip3 plays a role in I/R injury, we generated a TAT-fusion protein encoding the carboxyl terminal transmembrane deletion mutant of Bnip3 (TAT-Bnip3DeltaTM) which has been shown to act as a dominant negative to block Bnip3-induced cell death. Perfusion with TAT-Bnip3DeltaTM conferred protection against I/R injury, improved cardiac function, and protected mitochondrial integrity. Moreover, Bnip3 induced extensive fragmentation of the mitochondrial network and increased autophagy in HL-1 myocytes. 3D rendering of confocal images revealed fragmented mitochondria inside autophagosomes. Enhancement of autophagy by ATG5 protected against Bnip3-mediated cell death, whereas inhibition of autophagy by ATG5K130R enhanced cell death. These results suggest that Bnip3 contributes to I/R injury which triggers a protective stress response with upregulation of autophagy and removal of damaged mitochondria.  相似文献   

11.
Exposure to anthrax causes life-threatening disease through the action of the toxin produced by the Bacillus anthracis bacteria. Lethal factor (LF), an anthrax toxin component which causes severe vascular leak and edema, is a protease which specifically degrades MAP kinase kinases (MKK). We have recently shown that p38 MAP kinase activation leading to HSP27 phosphorylation augments the endothelial permeability barrier. We now show that treatment of rat pulmonary microvascular endothelial cells with anthrax lethal toxin (LeTx), which is composed of LF and the protective antigen, increases endothelial barrier permeability and gap formation between endothelial cells through disrupting p38 signaling. LeTx treatment increases MKK3b degradation and in turn decreases p38 activity at baseline as well as after activation of p38 signaling. Consequently, LeTx treatment decreases activation of the p38 substrate kinase, MK2, and the phosphorylation of the latter's substrate, HSP27. LeTx treatment disrupts other signaling pathways leading to suppression of Erk-mediated signaling, but these effects do not correlate with LeTx-induced barrier compromise. Overexpressing phosphomimicking (pm)HSP27, which protects the endothelial permeability barrier against LeTx, blocks LeTx inactivation of p38 and MK2, but it does not block MKK3b degradation or Erk inactivation. Our results suggest that LeTx might cause vascular leak through inactivating p38-MK2-HSP27 signaling and that activating HSP27 phosphorylation specifically restores p38 signaling and blocks anthrax LeTx toxicity. The fact that barrier integrity could be restored by pmHSP27 overexpression without affecting degradation of MKK3b, or inactivation of Erk, suggests a specific and central role for p38-MK2-HSP27 in endothelial barrier permeability regulation.  相似文献   

12.
13.
Anthrax lethal toxin (LeTx) is a virulence factor causing immune suppression and toxic shock of Bacillus anthracis infected host. It inhibits cytokine production and cell proliferation/differentiation in various immune cells. This study showed that a brief exposure of LeTx caused a continual MEK1 cleavage and prevented tumor necrosis factor-alpha (TNF) production in response to lipopolysaccharide (LPS) in non-proliferating cells such as human peripheral blood mononuclear cells or mouse primary peritoneal macrophages. In human monocytic cell lines U-937 and THP-1, LeTx induced cell cycle arrest in G0-G1 phase by rapid down-regulation of cyclin D1/D2 and checkpoint kinase 1 through MEK1 inhibition. However, THP-1 cells adaptively adjusted to LeTx and overrode cell cycle arrest by activating the phosphatidylinositol 3-kinase/Akt signaling pathway. Inhibitory Ser-9 phosphorylation of glycogen synthase kinase 3beta (GSK3beta) by Akt prevented proteasome-mediated cyclin D1 degradation and induced cell cycle progress in LeTx-intoxicated THP-1 cells. Recovery from cell cycle arrest was required before recovering from on-going MEK1 cleavage and suppression of TNF production. Furthermore, pretreatment with LeTx or the GSK3-specific inhibitor SB-216763, or transfection with dominant active mutant Akt or degradation-defected mutant cyclin D1 protected cells from LeTx-induced cell cycle arrest, on-going MEK1 cleavage and suppression of TNF production. These results indicate that modulation of phosphatidylinositol 3-kinase/Akt/GSK3beta signaling cascades can be beneficial for protecting or facilitating recovery from cellular LeTx intoxication in cells that depend on basal MEK1 activity for proliferation.  相似文献   

14.
Anthrax lethal factor (LF) is the protease component of anthrax lethal toxin (LT). LT induces pyroptosis in macrophages of certain inbred mouse and rat strains, while macrophages from other inbred strains are resistant to the toxin. In rats, the sensitivity of macrophages to toxin-induced cell death is determined by the presence of an LF cleavage sequence in the inflammasome sensor Nlrp1. LF cleaves rat Nlrp1 of toxin-sensitive macrophages, activating caspase-1 and inducing cell death. Toxin-resistant macrophages, however, express Nlrp1 proteins which do not harbor the LF cleavage site. We report here that mouse Nlrp1b proteins are also cleaved by LF. In contrast to the situation in rats, sensitivity and resistance of Balb/cJ and NOD/LtJ macrophages does not correlate to the susceptibility of their Nlrp1b proteins to cleavage by LF, as both proteins are cleaved. Two LF cleavage sites, at residues 38 and 44, were identified in mouse Nlrp1b. Our results suggest that the resistance of NOD/LtJ macrophages to LT, and the inability of the Nlrp1b protein expressed in these cells to be activated by the toxin are likely due to polymorphisms other than those at the LF cleavage sites.  相似文献   

15.
16.
Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1–6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia.  相似文献   

17.
The lethal toxin ofBacillus anthracis is central to the pathogenesis of anthrax. Using primary cultures of mouse peritoneal macrophages, we have demonstrated that intracellular calcium release inhibitors protect against anthrax lethal toxin-induced cytotoxicity. The cytolytic effect of anthrax lethal toxin was markedly reduced by dantrolene, an inhibitor of calcium release from intracellular calcium stores. Pretreatment of macrophages with cyclosporin A, which has been shown to be a potent inhibitor of calcium release from mitochondria, also protected cells against cytotoxicity. These results indicate that calcium release from intracellular store may be an essential step for the propagation of anthrax lethal toxin-induced cell damage in macrophages. Thus our findings suggest that dantrolene, cyclosporin A, and possibly other drugs affecting intracellular calcium pools might be effectively preventing the toxicity from anthrax lethal toxin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) is a member of the Bcl-2 homology domain 3-only subfamily of proapoptotic Bcl-2 proteins and is associated with cell death in the myocardium. In this study, we investigated the potential mechanism(s) by which Bnip3 activity is regulated. We found that Bnip3 forms a DTT-sensitive homodimer that increased after myocardial ischemia-reperfusion (I/R). The presence of the antioxidant N-acetylcysteine reduced I/R-induced homodimerization of Bnip3. Overexpression of Bnip3 in cells revealed that most of exogenous Bnip3 exists as a DTT-sensitive homodimer that correlated with increased cell death. In contrast, endogenous Bnip3 existed mainly as a monomer under normal conditions in the heart. Screening of the Bnip3 protein sequence revealed a single conserved cysteine residue at position 64. Mutation of this cysteine to alanine (Bnip3C64A) or deletion of the NH2-terminus (amino acids 1-64) resulted in reduced cell death activity of Bnip3. Moreover, mutation of a histidine residue in the COOH-terminal transmembrane domain to alanine (Bnip3H173A) almost completely inhibited the cell death activity of Bnip3. Bnip3C64A had a reduced ability to interact with Bnip3, whereas Bnip3H173A was completely unable to interact with Bnip3, suggesting that homodimerization is important for Bnip3 function. A consequence of I/R is the production of reactive oxygen species and oxidation of proteins, which promotes the formation of disulfide bonds between proteins. Thus, these experiments suggest that Bnip3 functions as a redox sensor where increased oxidative stress induces homodimerization and activation of Bnip3 via cooperation of the NH2-terminal cysteine residue and the COOH-terminal transmembrane domain.  相似文献   

19.
Lethal toxin, a key virulence factor produced by Bacillus anthracis, induces cell death, in part by disrupting numerous signaling pathways, in mouse macrophages. However, exposure to sublethal doses of lethal toxin allows some cells to survive. Because these pro-survival signaling events occur within a few hours after exposure to sublethal doses, we hypothesized that acute phase proteins might influence macrophage survival. Our data show that serum amyloid A (SAA) is produced in response to lethal toxin treatment. Moreover, pre-treatment of macrophages with exogenous SAA protected macrophages from lethal toxin-mediated death. Exogenous SAA activated the p38 mitogen activated protein kinase (MAP) kinase pathway, while lethal toxin mutants incapable of p38 activation were incapable of causing cell death. Chemical inhibition of the p38 activation pathway abrogated the protective effects of SAA. These data show that SAA affords protection against lethal toxin in mouse macrophages and link this response to the p38 pathway.  相似文献   

20.
Bnip3 is a member of the 'BH3-only' Bcl-2 subfamily which has been implicated in apoptotic,(1) necrotic(2) and autophagic cell death.(3,4) We recently reported that Bnip3 is a key mediator of mitochondrial dysfunction and cell death in the ex vivo heart following ischemia/reperfusion (I/R).(5) Moreover, we found that Bnip3 was involved in upregulation of autophagy in I/R and that Bnip3-mediated mitochondrial dysfunction correlated with upregulation of autophagy. Using a model of simulated I/R and overexpression of Bnip3 in HL-1 cardiac myocytes, we determined that Bnip3-mediated upregulation of autophagic activity constituted a protective response against Bnip3 death signaling. Here we present additional evidence that enhanced autophagic activity functions as a cytoprotective pathway to oppose ischemia/reperfusion-related apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号