首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lecithins with branched fatty acid chains were synthesized and characterized by differential scanning calorimetry and X-ray diffraction. The influence of three chemical alterations on the phase transition parameters were investigated: length of the branches in 2-position of the acyl chains, position of the branches in the acyl chains, and position of the branched fatty acid chains in the glycerol backbone. The results show that the branched phosphatidylcholines (PCs) have a reduced gel-to-liquid-crystalline phase transition temperature (Tm) compared to the corresponding straight-chain PCs. Depending on both the length of the branches in 2-position of the acyl chains and the position of the branches in the acyl chains, the Tm-values pass through a minimum. The systematic change of the main-transition temperatures Tm is connected with a modified structural polymorphism. If the length of the branches increases three types of polymorphism were observed.  相似文献   

2.
In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.  相似文献   

3.
The polymorphic phase behavior of aqueous dispersions of a number of representative phosphatidylcholines with methyl iso-branched fatty acyl chains was investigated by Fourier transform infrared (FT-IR) and phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy. For the longer chain phosphatidylcholines, where two transitions are resolved on the temperature scale, the higher temperature event can unequivocally be assigned to the melting of the acyl chains (i.e., a gel/liquid-crystalline phase transition), whereas the lower temperature event is shown to involve a change in the packing mode of the methylene and carbonyl groups of the hydrocarbon chains in the gel state (i.e., a gel/gel transition). The infrared spectroscopic data suggest that the methyl iso-branched phosphatidylcholines assume a partially dehydrated, highly ordered state at low temperatures, resembling the Lc phase recently described for the long-chain n-saturated phosphatidylcholines. At higher temperatures, some branched-chain phosphatidylcholines appear to assume a fully hydrated, loosely packed gel phase similar to but not identical with the P beta, phase of their linear saturated analogues. Thus, the iso-branched phosphatidylcholine gel/gel transition corresponds, at least approximately, to a summation of the structural changes accompanying both the subtransition and the pretransition characteristic of the longer chain n-saturated phosphatidylcholines. The infrared spectroscopic data also show that, in the low-temperature gel state, there are significant differences between the odd- and even-numbered isoacylphosphatidylcholines with respect to their hydrocarbon chain packing modes as well as to their head group and interfacial hydration states.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The basic fragmentation mechanisms occurring in the mass spectra of the phosphatidylcholines have been described previously, and evidence was adduced to show that many of the more abundant ions are related by electron impact-induced processes. A molecular ion was demonstrated for dioleoyl glycerylphosphorylcholine by accurate mass measurement and by metastable scanning. In the present paper, results are reported which further extend the previous work by including a more detailed investigation of "nonapparent" fragment ions for a series of phosphatidylcholines with different acyl side chains and also for a series of phosphatidyl amino alcohols of fixed acyl composition. The results demonstrate the effect of the choline quaternary nitrogen on the stability of the molecular ion, and estimates for the appropriate rate constants are given. Nitrogen-containing fragments have been demonstrated by recording spectra at low electron voltages. The work has also been extended to include natural phosphatidylcholine preparations of mixed acyl composition, and the possibility of detecting particular molecular species has been established. Quantitative estimates may be made using suitable synthetic phosphatidylcholines, and results are presented to show the variation of the molar correction factor with acyl chain length.  相似文献   

5.
R N Lewis  R N McElhaney 《Biochemistry》1985,24(18):4903-4911
The thermotropic phase behavior of aqueous dispersions of 10 phosphatidylcholines containing omega-cyclohexyl-substituted acyl chains was studied by differential scanning calorimetry and 31P nuclear magnetic resonance spectroscopy. The presence of the omega-cyclohexyl group has a profound effect on the thermotropic phase behavior of these compounds in a manner dependent on whether the fatty acyl chains have odd- or even-numbered linear carbon segments. The thermotropic phase behavior of the odd-numbered phosphatidylcholines is characterized by a single heating endotherm that was shown to be a superposition of at least two structural events by calorimetric cooling experiments. 31P NMR spectroscopy also showed that the single endotherm of the odd-chain compounds is the structural equivalent of a concomitant gel-gel and gel to liquid-crystalline phase transition. The calorimetric behavior of the even-numbered phosphatidylcholines is characterized by a complex array of gel-state phenomena, in addition to the chain-melting transition, in both the heating and cooling modes. The gel states of these even-numbered compounds are characterized by a relatively greater mobility of the phosphate head group as seen by 31P NMR spectroscopy. The differences between the odd-numbered and even-numbered compounds are reflected in a pronounced odd-even alternation in the characteristic transition temperatures and enthalpies and in differences in their responses to changes in the composition of the bulk aqueous phase. Moreover, both the odd-numbered and even-numbered omega-cyclohexylphosphatidylcholines exhibit significantly lower chain-melting transition temperatures and enthalpies than do linear saturated phosphatidylcholines of comparable chain length.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The (Ca2+ + Mg2+)-ATPase purified from rabbit muscle sarcoplasmic reticulum has been reconstituted into a series of phosphatidylcholines in the liquid crystalline phase. For phosphatidylcholines containing monounsaturated fatty acyl chains, optimal activity is observed for a chain length of C18, with longer or shorter chains supporting lower activities. Phospholipids with methyl-branched chain saturated fatty acids support somewhat lower activities than the corresponding phospholipids with mono-unsaturated fatty acids. Mixed chain phospholipids support ATPase activities comparable to those shown by an unmixed chain phospholipid with the same average chain length. However, the response of the ATPase reconstituted with mixed chain phospholipids to the addition of oleyl alcohol is dominated by the longest fatty acyl chain. Based on their ability to displace brominated phospholipids, relative binding constants to the ATPase of a series of phosphatidylcholines have been determined. Binding to the ATPase is virtually unaffected by fatty acyl chain length or the presence of methyl branches.  相似文献   

7.
All of the isobranched fatty acids of 12 to 18 carbons have been synthesized in gram quantities by a convenient acetylene coupling reaction followed by catalytic hydrogenation. The corresponding phosphatidylcholines (PCs) have been synthesized and their thermotropic phase behavior investigated by differential thermal analysis. The isobranched acyl phosphatidylcholines show gel-to-liquid-crystalline phase transition temperature (Tcs) some 20°C below those of the corresponding straight-chain PCs and appear to exhibit two slowly interconverting low-temperature phases below Tc. The observed strong alternation of Tcs between isobranched PCs with odd- and even-carbon number acyl chains contrasts with the behavior of the straight-chain PCs and suggests that the acyl chains of the branched-chain PCs are strongly tilted with respect to the bilayer normal below and/or above Tc while those of the straight-chain PCs are not. These results clearly indicate significant differences in the overall packing of branched-and straight-chain PCs in the gel and possibly the liquid-crystalline state.  相似文献   

8.
The thickness of the lipid bilayer in vesicles made of pure phosphatidylcholines, with acyl chain lengths ranging from 10 to 24 carbons, has been determined by analysis of continuous X-ray scattering data from vesicle pellets at temperatures above the lipid phase transition temperature. Bilayer thickness was found to vary linearly with the number of carbons per acyl chain. The lines for saturated and monounsaturated acyl chains were slightly displaced but had similar slopes. For the saturated species di-12:0, di-14:0, di-16:0, and di-18:0 phosphatidylcholine the surface areas per molecule were all 65.7 to 66.5 A2, while the monounsaturated species and di-10:0 phosphatidylcholine all occupied 67.7 to 70.1 A2 per molecule.  相似文献   

9.
R N Lewis  R N McElhaney 《Biochemistry》1985,24(10):2431-2439
The thermotropic phase behavior of aqueous dispersions of phosphatidylcholines containing one of a series of methyl iso-branched fatty acyl chains was studied by differential scanning calorimetry. These compounds exhibit a complex phase behavior on heating which includes two endothermic events, a gel/gel transition, involving a molecular packing rearrangement between two gel-state forms, and a gel/liquid-crystalline phase transition, involving the melting of the hydrocarbon chains. The gel to liquid-crystalline transition is a relatively fast, highly cooperative process which exhibits a lower transition temperature and enthalpy than do the chain-melting transitions of saturated straight-chain phosphatidylcholines of similar acyl chain length. In addition, the gel to liquid-crystalline phase transition temperature is relatively insensitive to the composition of the aqueous phase. In contrast, the gel/gel transition is a slow process of lower cooperativity than the gel/liquid-crystalline phase transition and is sensitive to the composition of the bulk aqueous phase. The gel/gel transitions of the methyl iso-branched phosphatidylcholines have very different thermodynamic properties and depend in a different way on hydrocarbon chain length than do either the "subtransitions" or the "pretransitions" observed with linear saturated phosphatidylcholines. The gel/gel and gel/liquid-crystalline transitions are apparently concomitant for the shorter chain iso-branched phosphatidylcholines but diverge on the temperature scale with increasing chain length, with a pronounced odd/even alternation of the characteristic temperatures of the gel/gel transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
(a) The physical properties and photopolymerization of diacetylene-containing phosphatidylcholines with acyl chains of different length and in liposome form have been studied. (b) The structure of these liposomes and their stability during polymerization have been examined using electron microscopy and glucose trapping. (c) Photopolymerization of the diacetylene groupings has been followed by monitoring the conversion of monomer and the formation of coloured polymer and the optimum conditions for polymerization have been established. (d) Changes induced by irradiation on the phase transition behaviour of these lipids were determined by differential scanning calorimetry. Polymerization decreases both the transition temperature and the enthalpy of the main endothermic transition. (e) The permeability of liposomes to glycerol is changed as a result of the polymerization process.  相似文献   

11.
The thermotropic phase behavior of four members of the homologous series of dl-methyl anteisobranched phosphatidylcholines was investigated by Fourier transform infrared spectroscopy. The odd-numbered phosphatidylcholines exhibit spectral changes in two distinct temperature ranges, while their even-numbered counterparts exhibit spectral changes within only a single temperature range. The high-temperature transition observed in the odd-numbered phosphatidylcholines and the single thermotropic event characteristic of the phase behavior of their even-numbered counterparts are both identified as gel/liquid-crystalline phase transitions. The low-temperature event exhibited only by the odd-numbered phospholipids is identified as a gel/gel phase transition that involves changes in the packing mode of the acyl chain methylene groups, as well as changes in the conformation of the glycerol ester interface. These infrared spectroscopic data thus suggest that at low temperatures the odd-numbered methyl anteisobranched phosphatidylcholines form a highly ordered condensed phase similar to the Lc phases of the linear saturated n-acyl-phosphatidylcholines. A comparable condensed phase was not formed by the even-numbered anteisobranched phosphatidylcholines under similar conditions. The properties of the gel states of the even-numbered anteisoacylphosphatidylcholines were generally similar to those of the high-temperature gel states of their odd-numbered counterparts. Those gel states exhibit spectral characteristics indicative of hexagonally packed but relatively mobile acyl chains. The temperature-dependent changes in the spectral characteristics of these gel states were continuous and were not resolved into the discrete but overlapping transitions observed by differential scanning calorimetry.  相似文献   

12.
The structural and dynamical properties of lipid membranes rich in phospholipids and cholesterol are known to be strongly affected by the unsaturation of lipid acyl chains. We show that not only unsaturation but also the position of a double bond has a pronounced effect on membrane properties. We consider how cholesterol interacts with phosphatidylcholines comprising two 18-carbon long monounsaturated acyl chains, where the position of the double bond is varied systematically along the acyl chains. Atomistic molecular dynamics simulations indicate that when the double bond is not in contact with the cholesterol ring, and especially with the C18 group on its rough β-side, the membrane properties are closest to those of the saturated bilayer. However, any interaction between the double bond and the ring promotes membrane disorder and fluidity. Maximal disorder is found when the double bond is located in the middle of a lipid acyl chain, the case most commonly found in monounsaturated acyl chains of phospholipids. The results suggest a cholesterol-mediated lipid selection mechanism in eukaryotic cell membranes. With saturated lipids, cholesterol promotes the formation of highly ordered raft-like membrane domains, whereas domains rich in unsaturated lipids with a double bond in the middle remain highly fluid despite the presence of cholesterol.  相似文献   

13.
Model membranes composed of cholesterol plus one of two phosphatidylcholines (PC), each containing a saturated and a dienoic acyl chain, have been studied by differential scanning calorimetry. The gel to liquid-crystalline phase transition temperature of 1-palmitoyl-2-linoleoyl PC was -19.5 degrees C and that of 1-stearoyl-2-linoleoyl PC was -13.7 degrees C. The addition of cholesterol to the phosphatidylcholines in aqueous dispersion resulted in the progressive removal of the phase transition as observed by differential scanning calorimetry. Per mole of sterol in the membrane, cholesterol was more effective at reducing the enthalpy change of the phase transitions of these bilayers containing dienoic phosphatidylcholines than it is in eliminating the transition of membranes made with other phospholipids that contain more saturated chains. No transitions in membranes made with palmitoyl-linoleoyl PC or stearoyl-linoleoyl PC could be detected calorimetrically when 17 mol% cholesterol was present.  相似文献   

14.
S Li  Z Q Wang  H N Lin    C Huang 《Biophysical journal》1993,65(4):1415-1428
Phosphatidylcholines or C(X):C(Y)PC, quantitatively the most abundant lipids in animal cell membranes, are structurally composed of two parts: a headgroup and a diglyceride. The diglyceride moiety consists of the glycerol backbone and two acyl chains. It is the wide diversity of the acyl chains, or the large variations in X and Y in C(X):C(Y)PC, that makes the family of phosphatidylcholines an extremely complex mixture of different molecular species. Since most of the physical properties of phospholipids with the same headgroup depend strongly on the structures of the lipid acyl chains, the energy-minimized structure and steric energy of each diglyceride moiety of a series of 14 molecular species of phosphatidylcholines with molecular weights identical to that of dimyristoylphosphatidylcholine without the headgroup are determined in this communication by molecular mechanics (MM) calculations. Results of two types of trans-bilayer dimer for each of the 14 molecular species of phosphatidylcholines are also presented; specifically, the dimeric structures are constructed initially based on the partially interdigitated and mixed interdigitated packing motifs followed subsequently by the energy-minimized refinement with MM calculations. Finally, tetramers with various structures to model the lateral lipid-lipid interactions in a lipid bilayer are considered. Results of laborious MM calculations show that saturated diacyl C(X):C(Y)PC with delta C/CL values greater than 0.41 prefer topologically to assemble into tetramers of the mixed interdigitated motif, and those with delta C/CL values less than 0.41 prefer to assemble into tetramers with a repertoire of the partially interdigitated motif. Here, delta C/CL, a lipid asymmetry parameter, is defined as the normalized acyl chain length difference between the sn-1 and sn-2 acyl chains for a C(X):C(Y)PC molecule; an increase in delta C/CL value is an indication of increasing asymmetry between the two lipid acyl chains. These computational results are in complete accord with the calorimetric data presented previously from this laboratory (H-n. Lin, Z-q. Wang, and C. Huang. 1991. Biochim. Biophys. Acta. 1067:17-28).  相似文献   

15.
X-ray diffraction was used to study the interdigitated structure of phosphatidylcholines (PCs) in glycerol. In this study, we investigated five different saturated diacyl PCs with carbon number from 14 to 18 in their acyl chains. It was found that lamellar spacings increase linearly as increasing the carbon number in the chains and that the increment is 0.10+/-0.01 nm per one carbon atom. The lamellar diffraction intensity data were analyzed, by applying a method proposed by Adachi [Chem. Phys. Lipids 107 (2000) 93]. The results indicate that the moiety around polar headgroup regions is almost unchanged, being independent of the carbon number.  相似文献   

16.
Phosphatidylcholine and cholesterol interactions in model membranes   总被引:1,自引:0,他引:1  
Various phosphatidylcholines differing either in the stereochemistry around their chiral center or in the position of a cis double bond along the acyl chains were synthesized in order to study critical contact regions in the phospholipid molecule with adjacent cholesterol in model membranes. Microviscosities calculated from fluorescence depolarization of diphenylhexatriene and chain order from spin label studies were measured to monitor physical membrane properties. The enhancing effect of cholesterol on the microviscosity of membranes containing phosphatidylcholines with comparable acyl chain length was largest when the two acyl chains were saturated and smallest when both were unsaturated. Membranes prepared from phosphatidylcholines having a single cis double bond at different positions along the sn-2 acyl chain showed roughly the same changes of microviscosity or chain order upon incorporation of cholesterol. No discrimination was evident in the interaction between cholesterol and enantiomeric phosphatidylcholines or between the enantiomeric phosphatidylcholine molecules themselves. We conclude that the rigidifying effect of cholesterol in membranes does not depend on specific sites of interaction and that with respect to physical membrane properties phosphatidylcholine behaves as an achiral molecule.  相似文献   

17.
The effect of the antibiotic polymyxin B on dipalmitoylphosphatidylglycerol (DPPG) bilayers has been studied by Raman and infrared spectroscopies and small-angle X-ray diffraction. Each polymyxin B molecule binds five DPPG molecules at physiological pH and induces a macroscopic phase separation of the complex rather than a lateral phase separation. Below the phase transition of DPPG/polymyxin B bilayers, the results obtained show that the intermolecular vibrational coupling is high and suggest that the acyl chains of the bound lipid are interdigitated and that the hydrophobic tail of the antibiotic does not penetrate this tight assembly. On the other hand, the phase transition of DPPG is shifted down from 41 degrees C to 37 degrees C in the complexes and remains highly cooperative. Above the phase transition of the complexes, the conformation of the acyl chains of DPPG is slightly more disordered as a result of the penetration of the polymyxin chain, but the structure of the glycerol backbone of the lipid does not seem to be affected. However, the rotational rate of the lipid appears to be restricted by the peptide.  相似文献   

18.
The influence of hydrocarbon chains on the temperature (TG-LC) of the gel to liquid-crystalline phase transition of model membranes has been investigated over an extensive variety of phosphatidylcholines (PC). The TG-LC is dependent upon the length of the hydrocarbon chains, on whether or not the chains are saturated or have been modified in some way, and on the position of any modification along the chain. For PC having two different acyl chains (heteroacid PC) in the sn-1 and sn-2 positions, the TG-LC is dependent on the chain position and on the inequivalence of chain penetration into the bilayer. Positional isomers of PC have different TG-LC. The first two double bonds introduced in each chain of a PC cause a much greater reduction in TG-LC and in the enthalpy change of the transition than does the subsequent introduction of additional double bonds. Dipolyunsaturated PC have uncooperative (broad) transitions that occur at low temperatures and have small enthalpy changes. While each PC has unique transitional characteristics, there are a number of patterns in the TG-LC which emerge on consideration of all the available data. One such pattern may be useful in predicting TG-LC from analytical data on the composition and positions of acyl chains of various lipids.  相似文献   

19.
R N Lewis  R N McElhaney 《Biochemistry》1990,29(34):7946-7953
The subgel phases of a homologous series of saturated straight-chain diacylphosphatidylcholines with hydrocarbon chains consisting of 10-18 carbon atoms were studied by Fourier-transform infrared spectroscopy. All of these lipids initially form a subgel phase which is spectroscopically similar to that obtained when fully hydrated multilamellar dispersions of dipalmitoylphosphatidylcholine are incubated at 0-4 degrees C for 2-4 days. However, further low-temperature incubation of those phosphatidylcholines with acyl chains of 16 or fewer carbon atoms results in the sequential formation of 1 or more additional, spectroscopically distinct subgel phases, with the number of such phases increasing as hydrocarbon chain length decreases. Our data indicate that the formation of all of these subgel phases involves both reorientation of the acyl chains and major changes in hydration and/or hydrogen-bonding interactions at the polar/apolar interfacial region of the lipid bilayer. We suggest that the driving force behind the formation of these Lc phases is the formation of an extended hydrogen-bonding network in the interfacial region of the bilayer and that the optimization of this network probably requires some distortion of the optimal packing of the acyl chains. As a result, an increase in acyl chain length makes the formation of these Lc phases less favorable and eventually prevents optimization of the hydrogen-bonding network at the bilayer polar/apolar interface.  相似文献   

20.
R N Lewis  N Mak  R N McElhaney 《Biochemistry》1987,26(19):6118-6126
The thermotropic phase behavior of a series of 1,2-diacylphosphatidylcholines containing linear saturated acyl chains of 10-22 carbons was studied by differential scanning calorimetry. When fully hydrated and thoroughly equilibrated by prolonged incubation at appropriate low temperatures, all of the compounds studied form an apparently stable subgel phase (the Lc phase). The formation of the stable Lc phase is a complex process which apparently proceeds via a number of metastable intermediates after being nucleated by incubation at appropriate low temperatures. The process of Lc phase formation is subject to considerable hysteresis, and our observations indicate that the kinetic limitations become more severe as the length of the acyl chain increases. The kinetics of Lc phase formation also depend upon whether the acyl chains contain an odd or an even number of carbon atoms. The Lc phase is unstable at higher temperatures and upon heating converts to the so-called liquid-crystalline state (the L alpha phase). The conversion from the stable Lc to the L alpha phase can be a direct, albeit a multistage process, as observed with very short chain phosphatidylcholines, or one or more stable gel states may exist between the Lc and L alpha states. For the longer chain compounds, conversions from one stable gel phase to another become separated on the temperature scale, so that discrete subtransition, pretransition, and gel/liquid-crystalline phase transition events are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号