首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper evaluates the long‐term effect of an ecological network of calcareous grasslands, a habitat type that experienced dramatic habitat loss and fragmentation during the 20th century, on species richness of habitat specialist plants. Calcareous grasslands are of special conservation concern as the habitat type with the highest diversity in plant and invertebrate species in central Europe. A baseline survey in 1989 established complete vascular plant species lists for all 62 previously abandoned calcareous grassland patches in the study area and assessed the presence of 48 habitat specialist plant species. An ecological network was initiated in 1989 to reconnect these patches with existing grazed pastures (core areas) through large flock sheep herding where feasible, as sheep are thought to be the primary dispersal vectors for calcareous grassland plants. An evaluation survey in 2009 showed significant increase in species richness of habitat specialist plants in patches reconnected by sheep herding, indicating successful colonizations by habitat specialist plants, while ungrazed patches showed no significant change. Observed increase in species richness between 1989 and 2009 was related to connectivity by sheep herding and the presence of a diversity of structural elements providing microsites for establishment. Baseline species richness of the patches, which had been abandoned since at least 1960, was associated with patch area, supporting the effect of ecological drift, and with vegetation type, which suggests that delays in extinction may be related to site factors governing the strength of competition with later seral species. The implementation of this ecological network represents a long‐term ‘natural experiment’ with baseline data, manipulation, and evaluation of hypothesized effects on a clearly defined target variable. It thus provides much needed empirical evidence that species loss in fragmented calcareous grassland communities can be counteracted by restoring functional connectivity among remnant patches.  相似文献   

2.
Different assemblages of primary and secondary pest grasshopper species were found in 5 different rangeland plant communities in western North Dakota. The action window for their control (i.e., the interval when control is likely to be efficacious) with short-lived insecticides can be visualized in terms of time, grasshopper phenology, or plant phenology. Action windows ranged from 14 d duration in habitats dominated by western wheatgrass to 38 d duration in habitats dominated by needle-and-thread or by crested wheatgrass. Action windows opened 11-15 d later in rhizominous grass habitats than in bunchgrass habitats because of increased presence of late-hatching secondary pest species. In all habitat types, action windows closed primarily in response to imminent oviposition by a ubiquitous primary pest species, Melanoplus sanguinipes (F.). In all habitat types, action windows tended to open during seed development of 2 common and conspicuous grasses, needle-and-thread and green needlegrass. No such consistent indicator for closure of action windows was detected.  相似文献   

3.

Semi-natural grasslands in Japan have decreased due to management abandonment and urbanization over the last 100 years, but they remain in suburban areas in addition to rural areas. Because suburban grasslands have various land-use histories and disturbance regimes, plant and herbivorous insect communities are likely to differ among grassland types. To identify grasslands with high conservation value, we conducted a comprehensive survey of grasshoppers and plants in 150 grasslands with 5 grassland types differing in land-use history and current management in northern Chiba prefecture, Japan. We then analyzed the association of the distributions of grasshopper and plant species compositions. Our results showed that grasshoppers were classified into habitat specialists and generalists. Three out of four habitat specialists were almost exclusively found in semi-natural grasslands and vacant lots, while habitat generalists were commonly observed at the cropland margins. This habitat specialist–generalist distribution gradient corresponded well to that found in plant communities, which was probably due to current disturbance regimes. We suggest that vacant lots as well as semi-natural grasslands have high conservation value for grassland organisms of various taxa in suburban areas, and grasshoppers are candidate indicator species for monitoring grassland environments.

  相似文献   

4.
Question: Whereas similar ecological requirements lead to trait‐convergence assembly patterns (TCAP) of species in communities, the interactions controlling how species associate produce trait‐divergence assembly patterns (TDAP). Yet, the linking of the latter to community processes has so far only been suggested. We offer a method to elucidate TCAP and TDAP in ecological community gradients that will help fill this gap. Method: We evaluated the correlation between trait‐based described communities and ecological gradients, and using partial correlation, we separated the fractions reflecting TCAP and TDAP. The required input data matrices describe operational taxonomic units (OTUs) by traits, communities by the quantities or presence‐absence of these OTUs, and community sites by ecological variables. We defined plant functional types (PFTs) or species as community components after fuzzy weighting by the traits. The measured correlations for TCAP and TDAP were tested by permutation. The null model for TDAP preserves the trait convergence, the structure intrinsic in the fuzzy types, and community total abundances and autocorrelation. Results: We applied the method to trait‐based data from plant communities in south Brazil, one set in natural grassland experimental plots under different nitrogen and grazing levels, and another in sapling communities colonizing Araucaria forest patches of increasing size in a forest‐grassland mosaic. In these cases, depending on the traits considered, we found strong evidence of either TCAP or TDAP, or both, that was related to the environmental gradients. Conclusions: The method developed is able to reveal TCAP and TDAP that are more likely to be functional for specified ecological gradients, allowing establishment of objective hypotheses on their links to community processes.  相似文献   

5.
Upland calcareous grassland landscapes are typically comprised of a matrix of calcareous grassland, acid grassland and limestone heath plant communities. This matrix of habitats is produced by a combination of underlying geology, climate and management. These landscapes are typically managed through grazing, with management targeted to maintain particular plant communities in the calcareous grassland habitat, whilst patches of acid grassland and limestone heath are not targeted by conservation management. The biodiversity value of acid grassland and limestone heath patches within the calcareous grassland matrix are unknown. This study provides the first assessment of their biodiversity value by examining aspects of epigeal spider diversity supported by these non-target habitat patches in comparison to calcareous grassland. Spiders were sampled in each habitat from April to August 2014 using pitfall traps across three upland regions in Great Britain. Spider species assemblages were distinct between limestone heath and both grassland types. Distinction in species assemblages are likely due to differences in vegetation structure and microclimate, e.g., humidity, degree of shade. Each habitat type supported several rare species (e.g., Jacksonella falconeri, Agyneta subtilis) revealing the contribution to spider fauna. The distinct spider species assemblage and presence of rare species in limestone heath patches demonstrate their importance in the upland calcareous grassland matrix. This study highlights the value of monitoring biodiversity in non-target habitats within a habitat matrix alongside those that are actively targeted by management.  相似文献   

6.
Biogenic habitat creation refers to the ability of some organisms to create, maintain or destroy habitats. These habitat changes affect species diversity of natural communities, but it remains to be elucidated if this process also affects the link between ecosystem functions and species diversity. Based on the widely accepted positive relationships between ecosystem functions and species diversity, we hypothesize that these relationships should be different in biogenically created habitat patches as compared to unmodified habitat patches. We tested this hypothesis by assessing the effects of a high-Andean cushion plant, Azorella madreporica, which creates habitat patches with different environmental conditions than in the surrounding open areas with reduced vegetation cover. We used observational and experimental approaches to compare the plant biomass–species richness relationships between habitat patches created by A. madreporica cushions and the surrounding habitat without cushion plants. The observational assessment of these relationships was conducted by counting and collecting plant species within and outside cushion patches. In the experiment, species richness was manipulated within and outside cushion patches. The cushion plant itself was not included in these approaches because we were interested in measuring its effects. Results of both approaches indicated that, for a given level of species richness, plant biomass within cushions was higher than in the surrounding open areas. Furthermore, both approaches indicated that the shape of plant biomass–species richness curves differed between these habitat types. These findings suggest that habitat modifications performed by A. madreporica cushions would be positively affecting the relationships between ecosystem functions and species diversity.  相似文献   

7.
Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among‐patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape‐scale. In this study, we used extensive field data from a fragmented, semi‐arid landscape in Israel to parameterize a multi‐species incidence‐function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics – the metacommunity, the mainland‐island, or the island communities type – best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch‐matrix study landscape is best represented as a system of highly isolated ‘island’ communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33–60% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.  相似文献   

8.
放牧干扰下的蝗虫-植物相互作用关系   总被引:8,自引:1,他引:8  
本文研究了内蒙古典型草原植物和蝗虫群落在不同放牧强度影响下的多样性、均匀性和丰盛度变化。比较了蝗虫群落与植物群落在放牧梯度上的相互作用关系。研究发现,放牧干扰活动会明显地影响植物和蝗虫群落结构,但蝗虫群落结构的变化趋势并非与植物完全同步。蝗虫与植物间的联系更多地表现在植物起着蝗虫栖息地条件的作用,而并不完全是食料植物的作用。文中对放牧实践与多样性保护的关系进行了讨论。  相似文献   

9.
Because species–environment interactions are mediated by phenotypic tradeoffs, the maintenance of ancestral traits in some phylogenetic clades and the emergence of evolutionary novelties in others are likely to limit the types of habitats that species occupy, generating phylogenetic habitat filtering. To test for phylogenetic habitat filtering in woody sapling communities in vegetation patches scattered in southern Brazilian grasslands, I estimated if patches of different sizes encompassed species of different phylogenetic groups. I analyzed patch composition with principal coordinates of phylogenetic structure (PCPS), extracted from a matrix of phylogeny‐weighted species composition, and compared these results against net relatedness index (NRI) analyses. NRI analysis revealed that most communities were phylogenetically random, and that patches of different sizes did not differ from each other with respect to NRI. The first four PCPS contained ? 91% of total variation in phylogeny‐weighted species composition. In the first two PCPS, scores of large patches differed from those of small and medium patches, which did not differ from each other. Large patches were associated with basal plant clades, whereas small patches were mostly related to asterids, and medium patches were phylogenetically diverse. Phylogenetic habitat filtering was detected only by PCPS analysis, possibly because NRI analysis does not take into account the habitat specificity of species. Taking phylogenetic habitat filtering into account in comparative studies likely enhances our capability to understand the ways that plants interact with their environment.  相似文献   

10.
Grasshoppers are a dominant group of herbivorous insects throughout the world, and their high diversity, functional importance, sensitivity to disturbance and ease of sampling makes them potentially useful bioindicators for land management. In Australia, however, the dynamics of grasshopper assemblages are extremely poorly understood. Here we describe the responses of grasshopper (Acridoidea, Eumastacoidea and Tettigonioidea) assemblages in the Kakadu region of the Northern Territory, Australia to disturbance associated with mining. Three questions were addressed in this study: (i) do local grasshopper assemblages show consistent responses to disturbance?; (ii) can particular species or functional groups be identified that are reliable indicators of ecological disturbance?; and (iii) to what extent do the responses of grasshopper assemblages merely reflect those of vegetation? Grasshoppers were sampled at 26 sites located in and around the Ranger uranium mine, representing three habitat types with respect to degree of disturbance: (i) ‘natural’ (10 sites representing a range of ‘undisturbed’ savanna habitats); (ii) ‘disturbed’ (10 sites representing a range of disturbances, but with soil intact); and (iii) ‘waste rock’ (six sites undergoing rehabilitation on a constructed landform). A total of 56 grasshopper species in 46 genera was recorded during the study, with site species richness ranging from five to 20. There were no significant differences between habitat types in site species diversity, but multivariate analysis demonstrated a strong correspondence between grasshopper species composition and degree of habitat disturbance. Using Indicator Species Analysis, six species and one functional group were identified as significant indicators of habitat type in relation to disturbance. Grasshopper responses were correlated with that of vegetation, but grasshopper assemblages showed apparently meaningful differentiation among disturbed sites that was not evident on the basis of floristic data. Our results demonstrate that grasshopper assemblages respond to disturbances associated with human land use and that these responses do not simply reflect those of plants. Grasshoppers are therefore potentially useful bioindicators of ecological disturbance in Australia, but further work is required on the extent to which their responses reflect general ecological change.  相似文献   

11.
We investigated invasion impacts of a grass species (Eragrostis curvula) on native grasshoppers by periodic censuses of these insects on gravelly floodplains of the Kinu River, Japan. Our hypothesis was that there are greater impacts on natives when they are habitat specialists, as opposed to habitat generalists. The study area comprised two main habitat types: gravelly areas and riparian grasslands. Among 12 grasshopper species identified, five were more abundant in one of the habitat types and all of them were significantly negatively affected by coverage of weeping lovegrass, whereas seven occurred at the both habitat types simultaneously and a significantly smaller portion of species (two of the seven) was negatively affected by the alien plants. The results suggest that habitat specificity is related to the grasshopper species’ sensitivity to the plant, indicating that habitat specialist herbivores living on open gravelly floodplains are likely highly vulnerable to this plant invasion.  相似文献   

12.
The faunas of tank bromeliads were sampled over two years in three forest types at different elevations in the Luquillo Experimental Forest, Puerto Rico, and the diversity of their animal communities compared. Bromeliad plants behaved as islands in that, within forests, the species richness and abundance of their animal communities were significantly and positively correlated with increase in plant size. The amount of canopy debris they accumulated was similarly correlated with increase in plant size. Overall diversity was lowest in the dwarf forest, where plants were uniformly small. Animal communities were stable from year to year, and could be characterised for each forest type and for compartments within the plant. They showed a pattern of high dominance, which increased with elevation (Mc-Naughton index 37, 54, and 73, respectively, for the tabonuco, palo Colorado, and dwarf forest). Alpha-diversity for sites sampled in each year reflected net primary productivity (NPP) of the forest, declining with increasing elevation when animal abundance measures were used (jackknife estimates of Simpson's diversity index 6.54 & 11.04 [tabonuco], 3.53 & 6.22 [palo Colorado], and 2.75 & 2.17 [dwarf forest]). Species richness over the two years, however, was highest in the intermediate palo Colorado forest (187 species), compared to 146 and 88 in the tabonuco and dwarf forests, respectively. These figures were close to jackknife estimates of maximum species richness. The difference in species richness between tabonuco and palo Colorado forests was significant in one year only. In addition to NPP, other factors, such as litter quality and the structural complexity of the habitat in the palo Colorado forest, may have influenced species richness. The most abundant species in individual plants were also the most widely occurring, confirming known patterns of abundance and distribution in other functional groups. Diversity within bromeliad microcosms at different elevations supported known relationships between diversity, productivity, and habitat complexity along gradients and was not related to differences in the total bromeliad habitat available for colonization.  相似文献   

13.
Community assembly and the factors that influence it have long been a topic of interest to ecologists, but theory has yet to produce unequivocal evidence that communities assemble in predictable ways. The goal of this study was to document the relationship between ant communities and environmental variation between four habitat types. To accomplish this, ant communities and 16 environmental variables were sampled across four different habitat types in the Black Belt Prairie and Flatwoods regions in Mississippi. Furthermore, ant species were placed into functional groups for an analysis of the relationship between the assembly of ecological communities and variation in ecosystem function. A total of 20,916 ants representing 68 species was collected across the four habitat types. Nonmetric multidimensional scaling and analysis of covariance analyses both revealed three distinct ant communities, which can be characterized by habitat type: pasture, prairie, and woodland. Principle components analysis (PCA) simplified the 16 environmental variables into four principle components that explained 78% of the variation among sites. Results of multiple regression using the four PCA axes as predictor variables suggest that regional variation in soil structure, land cover type, and the presence of grazing have had major influences on ant community composition. Variation in flora and habitat architecture had smaller but significant effects on ant species diversity and functional group composition. Our results imply that restoration of native ant communities in disturbed habitats must consider how current disturbance regimens likely interact with the presence of Solenopsis to lower ant biodiversity.  相似文献   

14.
Semi-arid scrubland in the Middle East consists of a soil crust matrix overlain with patches of perennial shrubs. To understand factors influencing biodiversity in this vulnerable landscape we need to understand how this mosaic of habitats influences associated fauna. Spiders are particularly abundant in this habitat so we asked if spider diversity differed between habitat patches and if different patch types contained either a subset of the regional species pool or specific species guilds. We also asked whether changes in the fractal nature of the microphytic and macrophytic patch mosaic altered spider diversity in this habitat. We found that the semi-arid scrubland at Sayeret Shaked Park (Israel) contains different spider communities that require patches of a certain quality to develop fully. Different patch types contain communities of different species, but the community structure of the patches is similar. We suggest that large-scale environmental factors typical of the site as a whole influence coarse-grained community structure, while small-scale differences between patch types result in the specialisation of species to different patch types.  相似文献   

15.
Ecological communities are spatially and temporally variable in response to a variety of biotic and abiotic forces. It is not always clear, however, if spatial and temporal variability leads to instability in communities. Instability may result from strong biotic interactions or from stochastic processes acting on small populations. I used 10-15 yr of annual data from the Konza Prairie Long-Term Ecological Research site to examine whether plant, breeding bird, grasshopper, and small mammal communities in tallgrass prairie exhibit stability or directional change in response to different experimentally induced fire frequencies. Based on ordination and ANOVA, plant and grasshopper communities on annually burned sites differed significantly from plant and grasshopper communities on less frequently burned sites. Breeding birds and small mammals differed among sites as well, but these differences were not clearly related to disturbance frequency. A modified time series analysis indicated that plant communities were undergoing directional change (unstable) on all watersheds, regardless of fire frequency. Contrary to expectations, directional change was greatest on the annually burned sites and lowest on the infrequently burned sites. Unlike the plant communities, breeding bird, grasshopper, and small mammal communities were temporally stable, despite high-compositional variability from 1 yr to the next. Stability among the consumer communities within these dynamic plant communities occurs because three-dimensional vegetation structure does not change over time, despite changes in plant species composition. Evidence suggests that instability in the plant community results from strong biotic interactions among temporally persistent core species and stochastic dynamics among infrequent satellite species. Overall, community stability cannot be assessed if the pattern of temporal dynamics is unknown. Long-term empirical studies of different taxa under different disturbance regimes are needed to determine over what time frames and spatial scales communities may be stable. Such studies are essential for the development of generalities regarding the relationship between disturbance frequency and community stability in terrestrial and aquatic systems.  相似文献   

16.
Two congeneric species of grasshopper, Stenobothrus lineatus and S. stigmaticus, are compared in an analysis of genetic structure relative to their observed mobility, and to the spatial structure of their habitat networks. The species differ in their habitat requirements, the latter being rarer and more restricted to isolated patches. We tested for different patch connectivity between the two species in an analysis of genetic variance (based on allozymes) under the assumption that, besides isolation, rarity influences the genetic parameters. Between the species we found no differences in genetic structure as estimated by FST; i.e., no isolation effects and no apparent differences between the species in the potential to move between habitat fragments on either a local or regional scale were found. However, the amount of genetic variation in the more widely distributed and less xerothermic S. lineatus was significantly higher than in S. stigmaticus. Some consistency with observed philopatry within patches was found (FIS > 0), but we consider regular dispersal events of medium and especially long distance to cause the habitat linking. We conclude that the connectivity between occupied patches inferred by genetic analyses can seldom be derived from low observed life-time movements recorded by conventional marking studies. Consequences of applying observed relative to indirect dispersal estimates for the examination of grasshopper metapopulations are discussed.  相似文献   

17.
Does the type of matrix matter? A quantitative review of the evidence   总被引:7,自引:0,他引:7  
It has been increasingly recognized that the type of matrix surrounding habitat patches can affect biodiversity in landscapes, but there were only qualitative reviews of the subject focused on particular taxonomic groups. We present a quantitative review of studies from 1985 to 2008 that compared effects of different matrix types on individuals, populations and communities. We compiled 104 studies, most on animals, covering a broad range of landscape types and spatial scales. Most studies were empirical, focused on individuals and communities, and evaluated abundance/richness in the patch as the dependent variable. The type of matrix surrounding habitat patches influenced the studied parameters in 95% of the studies, but such effects were overall smaller compared to patch size or isolation effects. Matrix type effects were strongly species-specific, with different species responding differently to matrix type in 96% of studies comparing species or group of species. In 88% of studies, matrix types more similar in structure to the patch had higher quality for the studied organisms from the point of view of functional connectivity. Overall, the type of matrix is important, but patch size and isolation are the main determinants of ecological parameters in landscapes. Matrix quality generally increases with increasing structural similarity with habitat patches, a pattern that could be used as a general guideline for management of the matrix in fragmented landscapes.  相似文献   

18.
放牧干扰下的蝗虫-植物相互作用关系   总被引:12,自引:2,他引:12  
康乐 《生态学报》1995,15(1):1-11
本文研究了内蒙古典型草原植物和蝗虫群落在不同放牧强度影响下的多样性、均匀性和丰盛度变化。比较了蝗虫群落与植物群落在放牧梯度上的相互作用关系。研究发现,放牧干扰活动会明显地影响植物和蝗虫群落结构,但蝗虫群落结构的变化趋势并非与植物完全同步。蝗早与植物间的联系列多地表现在植物起着蝗虫栖息地条件的作用,而并不完全是食料植物作用。文中对放牧实践与多样性保护的关系进行了讨论。  相似文献   

19.
Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills of central Nepal, we should maintain diverse local habitats (viz. forest, shrubs, open land, etc.) but also make sure the natural habitats on steeper slopes with large scale heterogeneity are maintained.  相似文献   

20.
Tropical rainforests are characterized by having high structural complexity, stratification, and species diversity. In Colombia, tropical rainforests are critically endangered with only 24% of their area remaining. Forest fragments are often valued based on the presence of vertebrate taxa despite that small habitat remnants may still harbor diverse invertebrate communities. We surveyed the ant fauna associated with rainforest fragments and their surrounding landscape elements (including mature forests, flooded forests, gallery forests, live fences, and pastures) in the Magdalena River watershed. Pitfall traps and litter samples were used to estimate ant richness and diversity, and to compare ant composition among landscape elements. We found 135 species from 42 genera, representing 16% of the species and 43% of the genera known for Colombia. Our surveys also uncovered 11 new ant records for the Colombian inter-Andean region and 2 new records for the country of Colombia: Mycocepurus curvispinosus (Mackay) and Rhopalothrix isthmica (Weber). The highest species richness was found in forest-covered sites, and richness and diversity was lower in the disturbed landscapes surrounding the forest patches. Species composition varied significantly between all habitat types, but was most similar between forest types suggesting that a loss of structural complexity has the greatest effect on ant communities. Across our study sites, ten species showed the greatest response to habitat type and could qualify as indicator taxa for this region. We conclude by discussing the value of conserving even small forests in this landscape due to their ability to retain high diversity of ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号