首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Saccharomyces cerevisiae Nha1p, a plasma membrane protein belonging to the monovalent cation/proton antiporter family, plays a key role in the salt tolerance and pH regulation of cells. We examined the molecular function of Nha1p by using secretory vesicles isolated from a temperature sensitive secretory mutant, sec4-2, in vitro. The isolated secretory vesicles contained newly synthesized Nha1p en route to the plasma membrane and showed antiporter activity exchanging H+ for monovalent alkali metal cations. An amino acid substitution in Nha1p (D266N, Asp-266 to Asn) almost completely abolished the Na+/H+ but not K+/H+ antiport activity, confirming the validity of this assay system as well as the functional importance of Asp-266, especially for selectivity of substrate cations. Nha1p catalyzes transport of Na+ and K+ with similar affinity (12.7 mM and 12.4 mM), and with lower affinity for Rb+ and Li+. Nha1p activity is associated with a net charge movement across the membrane, transporting more protons per single sodium ion (i.e., electrogenic). This feature is similar to the bacterial Na+/H+ antiporters, whereas other known eukaryotic Na+/H+ antiporters are electroneutral. The ion selectivity and the stoichiometry suggest a unique physiological role of Nha1p which is distinct from that of other known Na+/H+ antiporters.  相似文献   

2.
The Zygosaccharomyces rouxii Na+/H+ antiporter Sod2-22p is a member of the subfamily of yeast plasma membrane Nha/Sod antiporters that do not recognize potassium as their substrate. A functional study of two ZrSod2-22p mutated versions that improved the tolerance of a S. cerevisiae alkali-metal-cation sensitive strain to high extracellular concentration of KCl identified two polar non-charged amino-acid residues in the fifth transmembrane domain, Thr141 and Ser150, as being involved in substrate recognition and transport in yeast Nha/Sod antiporters. A reciprocal substitution of amino-acid residues with a hydroxyl group at these positions, T141S or S150T, produced a broadened cation selectivity of the antiporter for K+, in addition to Na+ and Li+. Site-directed mutagenesis of Ser150 showed that while the replacement of Ser150 with a small hydrophobic (valine) or negatively charged (aspartate) amino acid did not produce a significant change in ZrSod2-22p substrate specificity, the introduction of a positive charge at this position stopped the activity of the antiporter. This data demonstrates that the amino-acid composition of the fifth transmembrane domain, mainly the presence of amino acids containing hydroxyl groups in this part of the protein, is critical for the recognition and transport of substrates and could participate in conformational movements during the binding and/or cation transport cycle in yeast plasma membrane Na+/H+ antiporters.  相似文献   

3.
Yeast plasma membrane Na+/H+ antiporters are divided according to their substrate specificity in two distinct subfamilies. To identify amino acid residues responsible for substrate specificity determination (recognition of K+), the Zygosaccharomyces rouxii Sod2-22 antiporter (non-transporting K+) was mutagenized and a collection of ZrSod2-22 mutants that improved the KCl tolerance of a salt-sensitive Saccharomyces cerevisiae strain was isolated. Several independent ZrSod2-22 mutated alleles contained the replacement of a highly conserved proline 145 with a residue containing a hydroxyl group (Ser, Thr). Site-directed mutagenesis of Pro145 proved that an amino acid with a hydroxyl group at this position is enough to enable ZrSod2-22p to transport K+. Simultaneously, the P145(S/T) mutation decreased the antiporter transport activity for both Na+ and Li+. Replacement of Pro145 with glycine resulted in a ZrSod2-22p with extremely low activity only for Na+, and the exchange of a charged residue (Asp, Lys) for Pro145 completely stopped the activity. Mutagenesis of the corresponding proline in the S. cerevisiae Nha1 antiporter (Pro146) confirmed that this proline of the fifth transmembrane domain is a critical residue for antiporter function. This is the first evidence that a non-polar amino acid residue is important for the substrate specificity and activity of yeast Nha antiporters.  相似文献   

4.
The Na+/H+ antiporter Nha1p of Saccharomyces cerevisiae plays an important role in maintaining intracellular pH and Na+ homeostasis. Nha1p has a two-domain structure composed of integral membrane and hydrophilic tail regions. Overexpression of a peptide of approximately 40 residues (C1+C2 domains) that is localized in the juxtamembrane area of its cytoplasmic tail caused cell growth retardation in highly saline conditions, possibly by decreasing Na+/H+ antiporter activity. A multicopy suppressor gene of this growth retardation was identified from a yeast genome library. The clone encodes a novel membrane protein denoted as COS3 in the genome data base. Overexpression or deletion of COS3 increases or decreases salinity-resistant cell growth, respectively. However, in nha1Delta cells, overexpression of COS3 alone did not suppress the growth retardation. Cos3p and a hydrophilic portion of Cos3p interact with the C1+C2 peptide in vitro, and Cos3p is co-precipitated with Nha1p from yeast cell extracts. Cos3p-GFP mainly resides at the vacuole, but overexpression of Nha1p caused a portion of the Cos3p-GFP proteins to shift to the cytoplasmic membrane. These observations suggest that Cos3p is a novel membrane protein that can enhance salinity-resistant cell growth by interacting with the C1+C2 domain of Nha1p and thereby possibly activating the antiporter activity of this protein.  相似文献   

5.
Saccharomyces cerevisiae cells possess an alkali metal cation antiporter encoded by the NHA1 gene. Nha1p is unique in the family of yeast Na+/H+ antiporters on account of its broad substrate specificity (Na+, Li+, K+) and its long C-terminus (56% of the whole protein). In order to study the role of the C-terminus in Nha1p function, we constructed a series of 13 truncated NHA1 versions ranging from the complete one (2958 nucleotides, 985 amino acids) down to the shortest version (1416 nucleotides, 472 amino acids), with only 41 amino acid residues after the last putative transmembrane domain. Truncated NHA1 versions were expressed in an S. cerevisiae alkali metal cation-sensitive strain (B31; ena1-4Delta nha1Delta). We found that the entire Nha1p C-terminus domain is not necessary for either the proper localization of the antiporter in the plasma membrane or the transport of all four substrates (we identified rubidium as the fourth Nha1p substrate). Partial truncation of the C-terminus of about 70 terminal amino acids improves the tolerance of cells to Na+, Li+ and Rb+ compared with cells expressing the complete Nha1p. The presence of the neighbouring part of the C-terminus (amino acids 883-928), rich in aspartate and glutamate residues, is necessary for the maintenance of maximum Nha1p activity towards sodium and lithium. In the case of potassium, the participation of the long C-terminus in the regulation of intracellular potassium content is demonstrated. We also present evidence that the Nha1p C-terminus is involved in the cell response to sudden changes in environmental osmolarity.  相似文献   

6.
We identified and characterized Vnx1p, a novel vacuolar monovalent cation/H+ antiporter encoded by the open reading frame YNL321w from Saccharomyces cerevisiae. Despite the homology of Vnx1p with other members of the CAX (calcium exchanger) family of transporters, Vnx1p is unable to mediate Ca2+ transport but is a low affinity Na+/H+ and K+/H+ anti-porter with a Km of 22.4 and 82.2 mm for Na+ and K+, respectively. Sequence analyses of Vnx1p revealed the absence of key amino acids shown to be essential for Ca2+/H+ exchange. vnx1Delta cells displayed growth inhibition when grown in the presence of hygromycin B or NaCl. Vnx1p activity was found in the vacuoles and shown to be dependent on the electrochemical potential gradient of H+ generated by the action of the V-type H+-ATPase. The presence of Vnx1p at the vacuolar membrane was further confirmed with cells expressing a VNX1::GFP chimeric gene. Similar to Nhx1p, the prevacuolar compartment-bound Na+/H+ antiporter, the vacuole-bound Vnx1p appears to play roles in the regulation of ion homeostasis and cellular pH.  相似文献   

7.
There are three different sodium transport systems (Ena1-4p, Nha1p, Nhx1p) in Saccharomyces cerevisiae. The effect of their absence on the tolerance to alkali-metal cations and on the membrane potential was studied. All three sodium transporters were found to participate in the maintenance of Na+, Li+, K+ and Cs+ homeostasis. Measurements of the distribution of a fluorescent potentiometric probe (diS-C3(3) assay) in cell suspensions showed that the lack of all three transporters depolarizes the plasma membrane. The overexpression of the Na+,K+/H+ antiporter Nha1 resulted in the hyperpolarization of the plasma membrane and consequently increased the sensitivity to Cs+, Tl+ and hygromycin B. This is the first evidence that the activity of a Na+,K+/H+ antiporter could play a role in the homeostatic regulation of the plasma membrane potential in yeast cells.  相似文献   

8.
Na+/H+ antiporters are integral membrane proteins that exchange Na+ for H+ across the cytoplasmic or organellar membranes of virtually all living cells. They are essential for control of cellular pH, volume homeostasis, and regulation of Na+ levels. Na+/H+ antiporters have become increasingly characterized and are now becoming important drug targets. The recently identified NhaP family of Na+/H+ antiporters, from the CPA1 superfamily, contains proteins with a surprisingly broad collective range of transported cations, exchanging protons for alkali cations such as Na+, Li+, K+, or Rb+ as well as for Ca2+ and, possibly, NH4+. Questions about ion selectivity and the physiological impact of each particular NhaP antiporter are far from trivial. For example, Vc-NhaP2 from Vibrio cholerae has recently been shown to function in vivo as a specific K+/H+ antiporter while retaining the ability to exchange H+ for Na+ and bind (but not exchange with H+) Li+ in a competitive manner. These and other findings reviewed in this communication make antiporters of the NhaP type attractive systems to study intimate molecular mechanisms of cation exchange. In an evolutionary perspective, the NhaP family seems to be a phylogenetic entity undergoing active divergent evolution. In this minireview, to rationalize peculiarities of the cation specificity in the NhaP family, the "size-exclusion principle" and the idea of "ligand shading" are discussed.  相似文献   

9.
Application of protoplast transformation and single- and double-crossover mutagenesis protocols to alkaliphilic Bacillus firmus OF4811M (an auxotrophic strain of B. firmus OF4) facilitated the extension of the sequence of the previously cloned nhaC gene, which encodes an Na+/H+ antiporter, and the surrounding region. The nhaC gene is part of a likely 2-gene operon encompassing nhaC and a small gene that was designated nhaS; the operon is preceded by novel direct repeats. The predicted alkaliphile NhaC, based on the extended sequence analysis, would be a membrane protein with 462 amino acid residues and 12 transmembrane segments that is highly homologous to the deduced products of homologous genes of unknown function from Bacillus subtilis and Haemophilus influenzae. The full-length version of nhaC complemented the Na+-sensitive phenotype of an antiporter-deficient mutant strain of Escherichia coli but not the alkali-sensitive growth phenotypes of Na+/H+-deficient mutants of either alkaliphilic B. firmus OF4811M or B. subtilis. Indeed, NhaC has no required role in alkaliphily, inasmuch as the nhaC deletion strain of B. firmus OF4811M, N13, grew well at pH 10.5 at Na+ concentrations equal to or greater than 10 mM. Even at lower Na+ concentrations, N13 exhibited only a modest growth defect at pH 10.5. This was accompanied by a reduced capacity to acidify the cytoplasm relative to the medium compared to the wild-type strain or to N13 complemented by cloned nhaC. The most notable deficiency observed in N13 was its poor growth at pH 7.5 and Na+ concentrations up to 25 mM. During growth at pH 7.5, NhaC is apparently a major component of the relatively high affinity Na+/H+ antiport activity available to extrude the Na+ and to confer some initial protection in the face of a sudden upshift in external pH, i.e., before full induction of additional antiporters. Consistent with the inference that NhaC is a relatively high affinity, electrogenic Na+/H+ antiporter, N13 exhibited a defect in diffusion potential-energized efflux of 22Na+ from right-side-out membrane vesicles from cells that were preloaded with 2 mM Na+ and energized at pH 7.5. When the experiment was conducted with vesicles loaded with 25 mM Na+, comparable efflux was observed in preparations from all the strains.  相似文献   

10.
Na+/H+ antiporters play important physiological roles in most biological membranes. Although they were first discovered in mitochondria (Mitchell, P., and Moyle, J. (1969) Eur. J. Biochem. 9, 149-155), the mitochondrial Na+/H+ antiporter has not yet been reconstituted nor has the protein responsible for its activity been identified. We used detergents to extract proteins from beef heart mitochondria and reconstituted these proteins into lipid vesicles loaded with the fluorescent probe, sodium-binding benzofuran isophthalate. The vesicles exhibited spontaneous, electroneutral Na+ transport that was inhibited by Li+ and Mn2+ with appropriate kinetic constants. These protocols were then used to follow fractionation of the solubilized proteins with DEAE-cellulose columns. We obtained a fraction that catalyzed Na+/H+ antiport with Vmax values of 75-120 mumol/mg protein/min, 500-700 times faster than observed in intact mitochondria. Na+ transport was inhibited by Li+ with I50 values of 0.5-1.0 mM and by Mn2+ with I50 value of 0.5 mM. The Km for Na+ was 31 mM. These values correspond to those found in intact mitochondria, and we conclude that the solubilized mitochondrial Na+/H+ antiporter has been partially purified in a reconstitutively active state.  相似文献   

11.
The Saccharomyces cerevisiae Na(+)/H(+) antiporter Nha1p has a two-domain structure consisting of an N-terminal integral membrane region and a C-terminal cytoplasmic region. We previously identified six distinct cytoplasmic domains (C1-C6) conserved among yeast species and here we performed detailed structure-function analysis of the C1 domain (16 residues). Deletion of the C1 domain causes extensive inhibition of cell-growth under high salinity conditions. Mutants with single residue deletions or various amino acid substitutions affecting the C1 domain were analyzed with respect to salinity-dependent growth and Nha1p localization. The C1 domain was found to consist of two subdomains: (i) The first three N-proximal residues, which in conjunction with the integral membrane region play a crucial role in the targeting of Nha1p to the cytoplasmic membrane, and (ii) the portion between Leu-439 and Thr-449, which is not required for localization, but in which four residues (Gly-440, Arg-441, His-442, and Ile-446) affect salinity-sensitive cell-growth by possibly influencing the antiporter activity. Based on the overall similarity of the two-domain structure of Nha1p to that of mammalian Na(+)/H(+) antiporters, the functional importance of domains proximal to the membrane region is discussed.  相似文献   

12.
13.
Multiple resistance and pH adaptation (Mrp) antiporters are widely distributed in various prokaryotes and have been reported to function as a hetero-oligomeric monovalent cation/proton antiporter, which exchanges a cytoplasmic monovalent cation (Na(+) , Li(+) , and/or K(+) ) with extracellular H(+) . In many organisms, they are essential for survival in alkaline or saline environments. Here, we report that the Mrp antiporter from the thermophilic gram-negative bacterium, Thermomicrobium roseum, does not catalyze monovalent cation/proton antiport like the Mrp antiporters studied to date, but catalyzes Ca(2+) /H(+) antiport in Escherichia coli membrane vesicles.  相似文献   

14.
We examined the structure-function relationships of residues in the fifth transmembrane domain (TM5) of the Na+/H+ antiporter A (NhaA) from Helicobacter pylori (HP NhaA) by cysteine scanning mutagenesis. TM5 contains two aspartate residues, Asp-171 and Asp-172, which are essential for antiporter activity. Thirty-five residues spanning the putative TM5 and adjacent loop regions were replaced by cysteines. Cysteines replacing Val-162, Ile-165, and Asp-172 were labeled with NEM, suggesting that these three residues are exposed to a hydrophilic cavity within the membrane. Other residues in the putative TM domain, including Asp-171, were not labeled. Inhibition of NEM labeling by the membrane impermeable reagent AMS suggests that Val-162 and Ile-165 are exposed to a water filled channel open to the cytoplasmic space, whereas Asp-172 is exposed to the periplasmic space. D171C and D172C mutants completely lost Na+/H+ and Li+/H+ antiporter activities, whereas other Cys replacements did not result in a significant loss of these activities. These results suggest that Asp-171 and Asp-172 and the surrounding residues of TM5 provide an essential structure for H+ binding and Na+ or Li+ exchange. A168C and Y183C showed markedly decreased antiporter activities at acidic pH, whereas their activities were higher at alkaline pH, suggesting that the conformation of TM5 also plays a crucial role in the HP NhaA-specific acidic pH antiporter activity.  相似文献   

15.
The Nha1 antiporter is involved in regulation of intracellular pH in Saccharomyces cerevisiae. We report that deletion of the NHA1 gene resulted in an increase of cytoplasmic pH in cells suspended in water or acidic buffers. Addition of KCl or NaCl to exponentially growing cells lowered the internal pH but the difference between cells with or without NHA1 was maintained. Addition of KCl to starved cells resulted in much higher alkalinization of cytoplasmic pH in a strain lacking Nha1p compared to the wild-type or Nha1p-overexpressing strains. The H+/K+(Na+) exchange mechanism of Nha1p was confirmed in reconstituted plasma membrane vesicles.  相似文献   

16.
In saline environments, plants accumulate Na(+) in vacuoles through the activity of tonoplast Na(+)/H(+) antiporters. The first gene for a putative plant vacuolar Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and shown to increase plant tolerance to NaCl. However, AtNHX1 mRNA was up-regulated by Na(+) or K(+) salts in plants and substituted for the homologous protein of yeast to restore tolerance to several toxic cations. To study the ion selectivity of the AtNHX1 protein, we have purified a histidine-tagged version of the protein from yeast microsomes by Ni(2+) affinity chromatography, reconstituted the protein into lipid vesicles, and measured cation-dependent H(+) exchange with the fluorescent pH indicator pyranine. The protein catalyzed Na(+) and K(+) transport with similar affinity in the presence of a pH gradient. Li(+) and Cs(+) ions were also transported with lower affinity. Ion exchange by AtNHX1 was inhibited 70% by the amiloride analog ethylisopropyl-amiloride. Our data indicate a role for intracellular antiporters in organelle pH control and osmoregulation.  相似文献   

17.
Vibrio cholerae, the causative agent of cholera, is a normal inhabitant of aquatic environments, where it survives in a wide range of conditions of pH and salinity. In this work, we investigated the role of three Na+/H+ antiporters on the survival of V. cholerae in a saline environment. We have previously cloned the Vc-nhaA gene encoding the V. cholerae homolog of Escherichia coli. Here we identified two additional antiporter genes, designated Vc-nhaB and Vc-nhaD, encoding two putative proteins of 530 and 477 residues, respectively, highly homologous to the respective antiporters of Vibrio species and E. coli. We showed that both Vc-NhaA and Vc-NhaB confer Na+ resistance and that Vc-NhaA displays an antiport activity in E. coli, which is similar in magnitude, kinetic parameters, and pH regulation to that of E. coli NhaA. To determine the roles of the Na+/H+ antiporters in V. cholerae, we constructed nhaA, nhaB, and nhaD mutants (single, double, and triple mutants). In contrast to E. coli, the inactivation of the three putative antiporter genes (Vc-nhaABD) in V. cholerae did not alter the bacterial exponential growth in the presence of high Na+ concentrations and had only a slight effect in the stationary phase. In contrast, a pronounced and similar Li+-sensitive phenotype was found with all mutants lacking Vc-nhaA during the exponential phase of growth and also with the triple mutant in the stationary phase of growth. By using 2-n-nonyl-4-hydroxyquinoline N-oxide, a specific inhibitor of the electron-transport-linked Na+ pump NADH-quinone oxidoreductase (NQR), we determined that in the absence of NQR activity, the Vc-NhaA Na+/H+ antiporter activity becomes essential for the resistance of V. cholerae to Na+ at alkaline pH. Since the ion pump NQR is Na+ specific, we suggest that its activity masks the Na+/H+ but not the Li+/H+ antiporter activities. Our results indicate that the Na+ resistance of the human pathogen V. cholerae requires a complex molecular system involving multiple antiporters and the NQR pump.  相似文献   

18.
Synechocystis sp. strain PCC 6803 has five genes for putative Na(+)/H(+) antiporters (designated nhaS1, nhaS2, nhaS3, nhaS4, and nhaS5). The deduced amino acid sequences of NhaS1 and NhaS2 are similar to that of NhaP, the Na(+)/H(+) antiporter of Pseudomonas aeruginosa, whereas those of NhaS3, NhaS4, and NhaS5 resemble that of NapA, the Na(+)/H(+) antiporter of Enterococcus hirae. We successfully induced the expression of nhaS1, nhaS3, and nhaS4 under control of an Na(+)-dependent promoter in Escherichia coli TO114, a strain that is deficient in Na(+)/H(+) antiport activity. Inverted membrane vesicles prepared from TO114 nhaS1 and TO114 nhaS3 cells exhibited Na(+)(Li(+))/H(+) antiport activity. Kinetic analysis of this activity revealed that nhaS1 encodes a low-affinity Na(+)/H(+) antiporter with a K(m) of 7.7 mM for Na(+) ions and a K(m) of 2.5 mM for Li(+) ions, while nhaS3 encodes a high-affinity Na(+)/H(+) antiporter with a K(m) of 0.7 mM for Na(+) ions and a K(m) of 0.01 mM for Li(+) ions. Transformation of E. coli TO114 with the nhaS1 and nhaS3 genes increased cellular tolerance to high concentrations of Na(+) and Li(+) ions, as well as to depletion of K(+) ions during cell growth. To our knowledge, this is the first functional characterization of Na(+)/H(+) antiporters from a cyanobacterium. Inverted membrane vesicles prepared from TO114 nhaS4 cells did not have Na(+)/H(+) antiport activity, and the cells themselves were as sensitive to Na(+) and Li(+) ions as the original TO114 cells. However, the TO114 nhaS4 cells were tolerant to depletion of K(+) ions. Taking into account these results and the growth characteristics of Synechocystis mutants in which nhaS genes had been inactivated by targeted disruption, we discuss possible roles of NhaS1, NhaS3, and NhaS4 in Synechocystis.  相似文献   

19.
The Schizosaccharomyces pombe plasma membrane Na(+)/H(+) antiporter, SpSod2p, has been shown to belong to the subfamily of yeast Na(+)/H(+) antiporters that only recognize Na(+) and Li(+) as substrates. Nevertheless, most of the studied plasma membrane alkali metal cation/H(+) antiporters from other yeasts have broader substrate specificities, exporting K(+) and Rb(+) as well. Such antiporters probably play two roles in the physiology of cells: the elimination of surplus toxic cations, and the regulation of stable intracellular K(+) content, pH and cell volume. The systematic sequencing of the Sch. pombe genome revealed the presence of an as-yet uncharacterized homolog of the Spsod2 gene (designated Spsod22). Spsod22 and Spsod2 were expressed in Saccharomyces cerevisiae cells lacking their own alkali metal cation efflux systems, and the transport properties of both Sch. pombe antiporters were compared to those of the Sac. cerevisiae Nha1 antiporter expressed under the same conditions. Here we show that SpSod22p has broad substrate specificity upon heterologous expression in Sac. cerevisiae cells and contributes to cell tolerance to high external levels of K(+). Thus, the Sch. pombe genome encodes two plasma membrane alkali metal cation/H(+) antiporters that play different roles in the physiology of the yeast.  相似文献   

20.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号