首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA duplexes containing a single phosphoryldisulfide link in place of the natural internucleotide phosphodiester bond were employed in affinity modification of Cys142 in cytosine-C5 DNA methyltransferase SsoII (M.SsoII). The possibility of duplex–M.SsoII conjugation as a result of disulfide exchange was demonstrated. The crosslinking efficiency proved to depend on the DNA primary structure, modification position, and the presence of S-adenosyl-L-homocysteine, a nonreactive analog of the methylation cofactor. The SH group of M.SsoII Cys142 was assumed to be close to the DNA sugar-phosphate backbone in the DNA–enzyme complex.  相似文献   

2.
A complete series of the 2 ′–5 ′ and 3 ′–5 ′ regioisomeric types of r(ApA) and 2 ′-d(ApA) analogues with the α-hydroxy-phosphonate C3 ′-O-P-CH(OH)-C4 ″ internucleotide linkage, isopolar but non-isosteric with the phosphodiester one, were synthesized and their hybridization properties with polyU studied. Due to the chirality on the 5 ′-carbon atom of the modified internucleotide linkage bearing phosphorus and hydroxy moieties, each regioisomeric type of ApA dimer is split into epimeric pairs. To examine the role of the 5 ′-hydroxyl of the α-hydroxy-phosphonate moiety during hybridization, the appropriate r(ApA) analogues with 3 ′(2 ′)-O-P-CH2-C4 ″ linkage lacking the 5 ′-hydroxyl were synthesized. Nuclear magnetic resonance (NMR) spectroscopy study on the conformation of the modified sugar-phosphate backbone, along with the hybridization measurements, revealed remarkable differences in the stability of complexes with polyU, depending on the 5 ′-carbon atom configuration. Potential usefulness of the α-hydroxy-phosphonate linkage in modified oligoribonucleotides is discussed.  相似文献   

3.
A new uridine derivative, 2"-O-(2,3-dihydroxypropyl)uridine, and its 3"-phosphoramidite were obtained for direct introduction into oligonucleotides during automated chemical synthesis. Oligonucleotides 10 to 15 nt long harboring 2"-O-(2,3-dihydroxypropyl)uridine residues were synthesized; periodate oxidation of these oligomers gave oligonucleotides containing 2"-O-(2-oxoethyl)uridine residues. The presence of a reactive aldehyde group in 2" position of the carbohydrate moiety was confirmed by the interaction withp-nitrophenylhydrazine and methionine methyl ester. The thermostability of DNA duplexes containing modified units does not practically differ from that of the natural analogues.  相似文献   

4.
The chemical behavior of sulfur-containing oligonucleotides and their reactivity in self-assembled nucleic acids (NA) and specific NA–protein complexes is considered. Reviewed are postsynthetic approaches that allow introducing sulfur-containing linkages at preselected positions of the sugar-phosphate backbone of DNA and between neighboring nucleobases, to incorporate disulfide bridges between complementary strands of double- and triple-stranded DNAs, in large catalytic RNA, etc. Special reference is given to the site-specific chemical modifications as a tool for elucidating the structure, folding, and function of biomolecules. Structure-directed chemical reactions are shown to be helpful in detecting point mutations in DNA, targeting the modifications on specific positions of NA, probing the molecular recognition in protein–DNA interfaces, studying the conformational dynamics of nucleic acids, and discriminating between different folding models.  相似文献   

5.
Effective methods of the directed introduction of diphosphoryl disulfide bridges into hairpin DNA duplexes in place of natural phosphodiester groups were developed using the H2O2-effected ligation of 3′- and 5′-thiophosphorylated oligonucleotides or by autoligation of a preactivated oligonucleotide derivative with a phosphorothioate-bearing oligomer. The postsynthetic recombination of the disulfide-linked oligonucleotide fragments was characterized. It was shown that, along with template-directed reactions, out-of-duplex formation and exchange of diphosphoryl disulfide bonds in the DNA sugar-phosphate backbone may occur. In modified hairpin DNA, a spontaneous exchange of disulfide-linked fragments virtually does not take place because of the intramolecular duplex formation.  相似文献   

6.
Renaturation of recombinant human interleukin-3 produced as inclusion bodies in the transformed cells of Escherichia coli was studied and optimized. Importance was shown of removing from the protein solution the hydrophobic cellular components causing irreversible aggregation of the protein under renaturation conditions. An effect of pH on the secondary structure of the denatured protein was revealed by CD spectroscopy. It was thereby found that at pH 8.5, which is the optimal value for renaturation, the protein has the secondary structure most close to the native one. The isolation according to the scheme proposed allows preparation of interleukin-3 in 50% yield with 99% purity and biological activity 2 × 107 U/mg.  相似文献   

7.
A number of monomers for the standard phosphoamidite oligodeoxynucleotide synthesis that carry reactive methoxyoxalamide groups attached to the thymidine, 2-deoxycytidine, and 2-deoxyadenosine heterocyclic bases were prepared.  相似文献   

8.
Summary. A variety of N-[(4,6-diaryl-3-pyridinecarbonitrile)-2-yl] amino acid esters 2–4 were synthesized through the reaction of 2-bromo-3-pyridinecarbonitriles 1 with the appropriate -amino acid ester hydrochloride in refluxing dioxane in the presence of triethylamine as dehydrohalogenating agent. Similarly, N-glycylglycine analogues 5 were obtained through the reaction of 1 with the dipeptide ester. On the other hand, attempts were made towards the construction of amino acid derivatives 7 through the reaction of 1 with aqueous solution -amino acids 6 in refluxing pyridine, but were unsuccessful, and instead the unexpected 2-amino-3-pyridinecarbonitriles 8 were isolated. The fluorescence properties of the newly synthesized pyridines 25 were evaluated. Some of the prepared compounds show considerable antibacterial activity.  相似文献   

9.
Links Between the Pathology of Alzheimer's Disease and Vascular Dementia   总被引:10,自引:0,他引:10  
The major neuropathological lesions defining Alzheimer's disease (AD) include neurofibrillary tangles and amyloid plaques, which are mainly composed of abnormally phosphorylated tau and amyloid-beta (A beta), respectively. Numerous neuropathological and neuroimaging studies indicate that at least one-third of AD cases are complicated by some degree of vascular pathology, whereas in a similar proportion of patients clinically diagnosed with vascular dementia, AD pathology is also present. Many classical vascular risk factors such as hypertension, diabetes mellitus, and hypercholesterolemia have recently been shown also to increase the risk of AD. Growing evidence suggests that vascular pathology lowers the threshold for the clinical presentation of dementia at a given level of AD-related pathology and potentially directly promotes AD lesions such as A beta plaques. Cerebral ischemia, chronically up-regulates expression of the amyloid precursor protein (APP), which is the precursor to the amyloid beta peptide and damages the blood-brain barrier (BBB), affecting A beta peptide clearance from the brain. Recognition of the importance of these vascular risk factors for AD-related dementia and their treatment will be beneficial not only for preventing cardiac, cerebral, and peripheral complications of vascular disease, but also will likely have a direct impact on the occurrence of sporadic AD in older subjects. In this paper, we review some of the links between vascular risk factors and AD pathology and present data on the direct effect of ischemia on cognitive function and A beta deposition in a mouse model of AD.  相似文献   

10.
The properties of fluorescein are substantially altered upon conjugation to nucleic acids, affecting not only the molar absorptivities and fluorescence quantum yields but also the protolytic equilibrium constant and fluorescence lifetimes. Around neutral pH, the fluorescein moiety is present as both mono- and dianion, and the pKa relating them is increased from 6.43 for free fluorescein to about 6.90 for fluorescein attached to both single- and double-stranded oligonucleotides of at least 12 bases/base pairs. This difference reflects the local electrostatic potential around the nucleic acid, which is calculated to −28 mV. The molar absorptivities and spectral responses of the conjugated fluorescein protolytic species are also determined, from which the concentrations of fluorescein–oligonucleotide conjugates can be calculated by assuming: ε494 = 62000/[1 + 10−(pH−6.90)] + 12000/[1 + 10(pH−6.90)] (M−1 cm−1). The fluorescence quantum yield of the conjugates depends, in a complex way, on temperature, environment and oligonucleotide length, sequence and conformation, and must be determined for each experimental situation. © 1998 John Wiley & Sons, Inc. Biopoly 46: 445–453, 1998  相似文献   

11.
Chemical synthesis of a series of modified oligodeoxyribonucleotides containing one or two residues of thymidine glycol (5,6-dihydro-5,6-dihydroxythymidine), the main product of oxidative DNA damage, is described. The thermal stability of DNA duplexes containing thymidine glycol residues was studied using UV spectroscopy. Introduction of even one thymidine glycol residue into the duplex structure was shown to result in its significant destabilization. Data on the interaction of DNA methyltransferases and type II restriction endonucleases with DNA ligands containing oxidized thymine were obtained for the first time. Introduction of a thymidine glycol residue in the central degenerate position of the recognition site of restriction endonuclease SsoII was found to result in an increase in the initial hydrolysis rate of the modified duplex in comparison with that of unmodified structure. The affinity of C5-cytosine methyltransferase SsoII for the DNA duplex bearing thymidine glycol was found to be twofold higher than for the unmodified substrate. However, such a modification of the DNA ligand prevents its methylation.  相似文献   

12.
Summary. The 13C and 15N backbone-labeled proline was prepared using Oppolzer’s method based on application of a sultam as chiral auxiliary. This isotopomer was used in the synthesis of the 13C, 15N backbone-labeled C-terminal tripeptide amide fragment of neurohypophyseal hormone oxytocin. Finally, this tripeptide amide was coupled by segment condensation with N-Boc- or N-Fmoc-tocinoic acid, followed by N-deprotection with TFA or piperidine. The labeled oxytocin exhibited biological activity identical with that of natural oxytocin. A detailed 1H, 13C and 15N NMR study confirmed the assigned oxytocin conformation containing a β-turn in the cyclic part of the molecule, stabilized by H-bond(s) that can be perturbed by the C-terminal tripeptide amide moiety as indicated by comparison of NMR data for both the tocine ring in oxytocin and tocinoic acid.  相似文献   

13.
Grohs DC  Maison W 《Amino acids》2005,29(2):131-138
Summary. We present the synthesis of new modular dipeptide mimetics based on diazabicycloalkane backbones. These diazabicycloalkanes are ligands for the prostate specific membrane antigen (PSMA), a well known tumor marker. Our previously described synthetic route to enantiomerically pure diazabicycloalkanes is extended to yield polyfunctional diazabicycloalkanes with a modular character using a new ring closing methodology. This, finally, allows us to attach linker moieties to different positions of the diazabicycloalkane scaffold providing conjugation sites to other functional molecules such as markers or cytostatic compounds. Furthermore, successful synthesis of sulphur-containing dipeptide analogues as for example CysXAA- or HCysXAA-mimetics on the basis of diazabicycloalkanes is described.  相似文献   

14.
The effect of bleomycin A5 residue linked to four-, eight-, and twelve-mer oligodeoxyribonucleotides on the substrate properties of their tandem and continuous (with or without unmodified octanucleotide effectors) hybrid duplexes was studied using E. coli RNase H. The bleomycin derivatives of oligodeoxyribonucleotides were shown to form hybrid duplexes with practically the same thermostability as those formed by unmodified oligodeoxyribonucleotides. The RNA in the bleomycin-containing hybrid duplexes is cleaved by E. coli RNase H; however, the initial hydrolysis rate (v 0) is 2.6–3.4-fold reduced for the continuous duplexes. In the case of tandem hybrid complexes, the effect of bleomycin on v 0 was less pronounced. We hypothesized that steric factors play a key role in the bleomycin inhibition and effectors probably determine the substrate properties of such hybrid complexes. Of all the tandem systems studied, the RNA duplex with the bleomycin-containing tetranucleotide flanked with two effectors displayed the best substrate properties.  相似文献   

15.
A general synthetic method for Fmoc-protected monomers of all four diastereomeric aminoethyl peptide nucleic acid (aepPNA) has been developed. The key reaction is the coupling of nucleobase-modified proline derivatives and Fmoc-protected aminoacetaldehyde by reductive alkylation. Oligomerization of the aepPNAs up to 10mer was achieved by Fmoc-solid phase peptide synthesis methodology. Preliminary binding studies of these aepPNA oligomers with nucleic acids suggested that the “cis-” homothymine aepPNA decamers with (2′R,4′R) and (2′S,4′S) configurations can bind, albeit with slow kinetics, to their complementary RNA [poly(adenylic acid)] but not to the complementary DNA [poly(deoxyadenylic acid)]. On the other hand, the trans homothymine aepPNA decamers with (2′R,4′S) and (2′S,4′R) configurations failed to form stable hybrid with poly(adenylic acid) and poly(deoxyadenylic acid). No hybrid formation could be observed between a mixed-base (2′R,4′R)-aepPNA decamer with DNA and RNA in both antiparallel and parallel orientations.  相似文献   

16.
Baeyer–Villiger oxidation of 5-aryl-7,11,11-trimethyltricyclo[5.4.0.03,6]-undec-1-en-4-ones 4ah by H2O2 and formic acid in methanol yields mixtures of 3b,7,7-trimethyl-3-phenyl-3,3a,3b,4,5,6,7,8a-octahydro-1H-indeno-[1,2-c]furan-1-ones 8ah and 3b,7,7-trimethyl-3-phenyl-3,3a,3b,4,5,6,7,8a-octahydro-1H-indeno-[1,2-c]furan-2-ones 9ah in high yields. The obtained butyrolactones 8ah display cytotoxic activity against a number of human cancer cells.  相似文献   

17.
Karpuj M  Steinman L 《Amino acids》2004,26(4):373-379
Summary. A critical role for transglutaminase [TGase] has been hypothesized in the pathogenesis of the CAG trinucleotide repeat diseases, characterized by proteins with abnormal expansions of a polyglutamine domain. In the last few years the involvement of TGase in neurodegenerative diseases [NDS], including its role in aggregate formation, has been broadened to include Alzheimers [AD] and Parkinsons Disease [PD]. It is clear that reduction of TGase activity is beneficial for prolonged survival in mouse models of NDS. The pathological progression of these diseases might reflect in part increases of TGase induced aggregates, or changes in other pathways influenced by increases in TGase activity. Neurodegeneration may be influenced by increased TGase activity affecting apoptosis, modulation of GTPase activity and signal transduction. This review will focus on the leading hypotheses in relation to both old and new experimental results.  相似文献   

18.
19.
Interruption of an autocrine growth pathway involving TGF-α and EGFR may inhibit tumor growth and improve survival in head and neck cancer patients. We previously demonstrated that biopsy specimens and established cell lines from patients with squamous cell carcinoma of the head and neck (SCCHN) overexpress TGF-α and its receptor, epidermal growth factor receptor (EGFR) at both the mRNA and protein levels. Protein localization studies showed that TGF-α and EGFR are produced by the same epithelial cells in tissues from head and neck cancer patients further supporting a role for this ligand-receptor pair in an autocrine growth pathway. To confirm that TGF-α contributes to autocrine growth, we examined the effect of down regulation of TGF-α protein on SCCHN cell proliferation. Treatment of 6 SCCHN cell lines with antisense oligodeoxynucleotides targeting the translation start site of human TGF-α mRNA decreased TGF-α protein production by up to 93% and reduced cell proliferation by a mean of 76.2% compared to a 9.7% reduction with sense oligonucleotide (range P<0R > = 0.036–0.0001). TGF-α antisense oligonucleotide exposure also decreased TGF-α protein levels in normal oropharyngeal mucosal epithelial cells, however their growth rate was not affected. These findings indicate that TGF-α is participating in an autocrine signaling pathway in transformed, but not in normal mucosal epithelial cells, that promotes proliferation. J. Cell. Biochem. 69:55–62, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
A series of 5-aryl-3-alkylidenedihydrofuran-2(3H)-ones 6ag″ and 11a,b as well as 5-aryl-3-methylidenepyrrolidin-2-ones 10ac and 12 were synthesized starting from 4-aryl-2-diethoxyphosphoryl-4-oxobutanoates 3ag. Reaction sequence includes reduction or reductive amination of the carbonyl group, lactonization or lactamization step and finally the Horner–Wadsworth–Emmons olefination of aldehydes using thus obtained 5-aryl-3-diethoxyphosphoryl-3,4-dihydrofuran-2(5H)-ones 5ag″ or 5-aryl-3-diethoxyphosphorylpyrrolidin-2-ones 9ac. Furanones 6 and 11, as well as pyrrolidinones 10 and 12, were evaluated in vitro against mouse leukemia cell line L-1210 and two human leukemia cell lines HL-60 and NALM-6. Several of the obtained furanones proved to be very potent against all three cell lines with IC50 values lower than 6 μM. Structure–activity relationships of these compounds, as well as 5-alkyl or 5-arylmethyl-3-methylidenedihydrofuran-2(3H)-ones 13ae, previously obtained in our laboratory, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号