首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of locomotor muscle mitochondria was studied in white rats during different periods of deep hypothermia. An acute exposure to cold produced substantial changes of the muscle cellular mitochondrial apparatus, such as matrix swelling, crysts destruction with a significant decrease in mitochondrial profiles on the periphery of muscle fibers. Destructive and degenerative mitochondrial lesions were greater in prolonged hypothermia and subsequent warming. Such structural reaction of locomotor muscle mitochondria could reveal a substantial insufficiency of the muscle cellular energy apparatus during experimental hypothermia.  相似文献   

2.
Responses of the skeletal muscle tissue and thymus to muscle injury (complete transection) and wound xenoplasty with the minced muscle tissue of newborn rats (tissue therapy) were studied in mdx mice aged 12–16 and 40–48 weeks. The muscle tissue of mdx mice has genetic defects causing chronic dystrophic processes in it. The muscle tissue of young mdx mice proved to retain a relatively high capacity for regeneration. Under conditions of tissue therapy of the wound, the formation of muscle fibers from muscle cells of the graft and active regeneration of muscle fibers in the recipient mice were observed, and no structural defects were detected in the thymus. The capacity of posttraumatic regeneration in old mdx mice was lower. The xenogenic graft was undergoing resorption, thereby suppressing regeneration of muscle fibers and causing further tissue destruction in the injured muscle. The thymus parenchyma was subject to degenerative changes such as the formation of gaps, hemorrhagic foci, and increased numbers of macrophages and mast cells.  相似文献   

3.
Pathophysiology of cleft lip muscle   总被引:1,自引:0,他引:1  
Although attention has been focused for decades on the correction of cleft lip deformities, our knowledge about the etiology of such deformities has remained presumptive. Sixty-six muscle biopsy specimens from cleft lip infants were obtained at the time of primary closure. Histochemical stains, histographic analysis, and electron microscopy were performed. A nonneurogenic muscle atrophy was seen that varied in severity, with muscle fibers near the cleft being the most atrophic and disorganized. Muscle fibers stained with the modified Gomori trichrome technique also demonstrated "ragged red" fibers typical of a mitochondrial myopathy. Electron microscopy confirmed large accumulations of mitochondria distorting the fibrils. These mitochondria also were increased in size and densely packed with cristae. This study thus demonstrates that the muscles in cleft lip deformities are not normal. Instead, they reflect either myopathy in the facial mesenchymal mitochondrion or at least a delay in maturation. We hypothesize that some of the morphologic deformities associated with cleft lip may cause a failure of mesenchymal reinforcement of the facial processes at a critical time in development.  相似文献   

4.
The ultrastructure of mitochondria of cross-striated muscles during aging was studied by electron microscopy. Mitochondrial ultrastructure was analyzed in the flight muscle of D. melanogaster (1- and 36-day-old) and in the cardiomyocytes and skeletal muscle of young and senile Wistar and OXYS rats (3- and 25-month-old). The mitochondria in the flight muscle samples of senile D. melanogaster flies were shown to have several types of peculiar age-related mitochondrial abnormalities corresponding to those described previously. Previously unknown changes were revealed in the ultrastructure of cardiomyocyte mitochondria in senile rats (both Wistar and OXYS). Substantial changes in the ultrastructure of subsarcolemmal mitochondria were found in the fibers of red skeletal muscle of senile OXYS rats. It has been shown that the subsarcolemmal mitochondria of red muscle fibers are a peculiar population of mitochondria with atypical ultrastructure. Initial changes in the ultrastructure of subsarcolemmal mitochondria were revealed even in 3-month-old OXYS rats. At the same time, the skeletal muscle mitochondria of senile Wistar rats maintain their morphological characteristics, and their ultrastructure corresponds to that of skeletal muscle mitochondria in 3-month-old Wistar rats.  相似文献   

5.
A comparative analysis of changes in ultrastructure of neuro-muscular synapses of three types has been studied in the rat diaphragmal muscle at an acute poisoning with chlorophos. A high stability to the damaging action of chlorophos in white muscle fibers has been revealed in comparison with other types. The most essential changes of the ultrastructure have taken place in slow intermediate fibers. These differences are evidently connected with certain peculiarities in morphofunctional organization of calcium-sequestring ++ components of three types of muscle fibers (sarcotubular system, mitochondria) and presence of parvalbulin.  相似文献   

6.
Oxoguanine DNA glycosylase (OGG1) and uracil DNA glycosylase (UDG) are two of the most important repair enzymes that are involved in the base excision repair processes to eliminate oxidative damage from mammalian DNA, which accumulates with aging. Red and white skeletal muscle fibers have very different antioxidant enzyme activities and resistance to oxidative stress. In this paper, we demonstrate that the activity of OGG1 is significantly higher in the red type of skeletal muscle compared with white fibers from old rats. Exercise training resulted in increased OGG1 activity in the nuclei of red fibers and decreased activity in nuclei of white fibers and in the mitochondria of both red and white fibers. The activities of UDG were similar in both red and white muscle fibers. Exercise training appears to increase the activity of UDG in the nuclei and mitochondria. However, exercise training affects the activity of OGG1 in nuclei and mitochondria differently, suggesting different regulation of the enzymes. In contrast, UDG showed similar activities in nuclei and mitochondrial extracts of exercise-trained animals. These data provide evidence for differential regulation of UDG and OGG1 in maintaining fidelity of DNA in oxidatively stressed cells.  相似文献   

7.
Alcohol-induced muscle damage (AIMD) is an umbrella term that includes all forms of alcoholic myopathy developing in acute or chronic alcohol intoxication. The most common form of destruction of skeletal muscles in alcoholism is chronic alcoholic myopathy, which develops independently of other alcohol-induced disorders, such as polyneuropathy, the malabsorption syndrome, and liver damage, but may be combined with them. The atrophy of muscle fibers underlies skeletal muscle destruction in chronic AIMD. Type II muscle fibers are affected to a greater degree than type I muscle fibers. To date, the pathogenesis of chronic alcoholic myopathy has been studied insufficiently. The imbalance between protein synthesis and proteolysis, as well as increased apoptosis rate, is discussed.  相似文献   

8.
Smooth muscle gelsolin, termed smooth muscle 90-kDa protein in our previous paper (Kanno et al. FEBS Lett. 1985; 184:202-206), was purified from bovine aorta. Antibody prepared against smooth muscle gelsolin was used to detect the presence of gelsolin in human lung fibroblast MRC-5 cells permeabilized with Triton X-100 (MRC-5 cell models). These cells contracted in the presence of MgATP and Ca2+ in doses over 1 microM. Immunofluorescence microscopy using phalloidin and antigelsolin antibody showed that gelsolin was distributed along the stress fibers, except for a marginal bundle of cells, when MRC-5 cells were growth-arrested in serum-depleted medium. Making use of immunoblotting and indirect immunofluorescence techniques, we demonstrated that gelsolin is not retained in the MRC-5 cell models. We used purified smooth muscle gelsolin as a specific agent to sever the actin filaments. Preincubation of MRC-5 cell models with gelsolin led to a destruction of stress fibers, in a dose- and Ca2+ -dependent manner. The contractility was also lost, in the same manner described above, thereby indicating that a continuous distribution of actin filaments within the stress fibers is required for cell contraction. Treatment of MRC-5 cells with the Ca2+ ionophore A23187 induced an extracellular Ca2+ -dependent contraction but not a massive destruction of stress fibers, thereby indicating that most of the endogenous gelsolin was inactive under these conditions. Our interpretation of these results is that increases in cytoplasmic Ca2+ concentrations are sufficient for the contraction but may be too transient to activate endogenous gelsolin and thereby disrupt the stress fibers. Indeed, the inhibition of contraction of the MRC-5 cell, as induced by smooth muscle gelsolin, required preincubation in the presence of Ca2+, before the addition of MgATP. These results suggest that destruction of the stress fibers by endogenous gelsolin, which leads to inhibition of cell contraction, may occur if the cytoplasmic Ca2+ is maintained at high concentrations for a few minutes.  相似文献   

9.
Summary The three-dimensional structure and arrangement of mitochondria in the red, white and intermediate striated muscle fibers of the rat were examined under a field-emission type scanning electron microscope after removal of cytoplasmic matrices by means of the Osmium-DMSO-Osmium procedure.Beneath the sarcolemma, spherical or ovoid subsarcolemmal mitochondria show accumulations. The mitochondria are numerous and large in size in the red fibers, intermediate in the intermediate fibers, and few and small in the white fibers. Paired, slender I-band-limited mitochondria were located on both sides of the Z-line and partly embraced the myofibrils at the I-band level; they occurred in all three types of fibers. In the intermyofibrillar spaces, numerous mitochondria formed mitochondrial columns. These columns were classified into two types: 1) thick mitochondrial columns, formed by multiple mitochondria each with an intermyofibrillar space corresponding to one sarcomere in length, and 2) thin mitochondrial columns, established by single mitochondria corresponding to one sarcomere in length. In the red fibers mitochondrial columns were abundant and the ratio of the thick and thin columns was almost the same, while in the intermediate fibers most of the columns belonged to the thin type. The white fibers displayed rare, very thin columns.  相似文献   

10.
The mdx mouse, an animal model of the Duchenne muscular dystrophy, was used for the investigation of changes in mitochondrial function associated with dystrophin deficiency. Enzymatic analysis of skeletal muscle showed an approximately 50% decrease in the activity of all respiratory chain-linked enzymes in musculus quadriceps of adult mdx mice as compared with controls, while in cardiac muscle no difference was observed. The activities of cytosolic and mitochondrial matrix enzymes were not significantly different from the control values in both cardiac and skeletal muscles. In saponin-permeabilized skeletal muscle fibers of mdx mice the maximal rates of mitochondrial respiration were about two times lower than those of controls. These changes were also demonstrated on the level of isolated mitochondria. Mdx muscle mitochondria had only 60% of maximal respiration activities of control mice skeletal muscle mitochondria and contained only about 60% of hemoproteins of mitochondrial inner membrane. Similar findings were observed in a skeletal muscle biopsy of a Duchenne muscular dystrophy patient. These data strongly suggest that a specific decrease in the amount of all mitochondrial inner membrane enzymes, most probably as result of Ca2+ overload of muscle fibers, is the reason for the bioenergetic deficits in dystrophin-deficient skeletal muscle.  相似文献   

11.
The structure of both the slow- and the fast-adapting abdominal muscle receptor organ of Astacus leptodactylus is described with particular reference to differences between the two systems. The receptors are composed of a thin muscle that extends from the front edge of one segment to the front edge of the following and a sensory cell connected with this muscle. In the zone where the sensory cells enter their respective muscle, muscle fibers are reduced (zone of relative muscle exclusion = ZRME) and partly replaced by connective tissue. The occurrence of dendritic processes of both the slow and the fast neurons is confined to this zone. The following differences between the two receptor types are established: (1) The fast receptor muscle reveals a smaller sarcomere length than the slow receptor muscle and a higher myosin/actin filament ratio. (2) Muscle fibers that pass the ZRME are always found at its periphery in the fast system, separated from dendritic processes by layers of connective tissue, while in the slow system muscle fibers frequently are intermingled with the sensory elements. (3) The ZRME of the slow receptor is 20-30% longer than that of the fast receptor. (4) The dendritic varicosities of the slow neuron, on an average, contain many more mitochondria than those of the fast neuron. (5) Dendritic processes (fine twigs as well as varicosities) are juxtaposed to the sarcolemma of the muscle fibers only in the slow system; in the fast system dendrites and muscle are spatially separated by connective tissue. It is assumed that these differences between the two receptor types are at least in part responsible for the different thresholds observed in physiological experiments.  相似文献   

12.
Heart and skeletal muscle from rats of different ages were incubated in vitro in an oxygen-free medium supplied with substrates in order to investigate the effect of anoxia on muscle fine structure, particulary on the mitochondria. In skeletal muscle fibers anoxia has been found to induce changes similar to those previously described in ischemic muscles in vivo namely giant mitochondria, apparently derived by mitochondrial fusion, and intermembrane inclusions with a paracrystalline structure. The plate-like inclusions are mostly located in the intracristal spaces and are closely associated to cristal membranes even in markedly swollen mitochondria. Identical inclusions have been observed in cardiac muscle cells following anoxic injury, whereas they are never found in non-muscle cells such as endothelia, fibroblasts and nerve fibers. Cardiac and skeletal muscle fibers from newborn rats maintained in an oxygen-free medium show mitochondrial swelling but no intermembrane inclusions. The different response of mitochondria from developing vs adult striated muscle to anoxia may be due to changes during postnatal development in the quality or quantity of the protein component(s) involved in paracrystal formation.  相似文献   

13.
Ultrastructural changes of rat diaphragm muscle fibers were studied after administration of chlorophos, i. e. organophosphorus inhibitor. Observations were made 10-180 seconds after treatment (concentrations--18 and 24 mM). The swelling of mitochondria and the increase in the length of sarcomeres were observed simultaneously. These changes were phasic. The swelling of mitochondria is probably due to the increase in energetical activity of muscle fibres.  相似文献   

14.
Summary The ultrastructure of fast-twitch-oxidative-glycolytic (FOG), fasttwitch-glycolytic (FG) and slow-twitch-oxidative (SO) fibers in plantaris and soleus muscles of normal and streptozotocin-diabetic rats was studied. In the diabetic animals, the mitochondria of FOG and SO fibers showed a loss of cristae and an increase in electron-dense granules. There was also an increased number of lipid droplets in close proximity to the mitochondria and the nuclei, and a separation of individual muscle nuclei to form satellite cells. Higher incidences of surface projections and sarcoplasmic splittings at the nuclear region were noticed in SO fibers. The FG fibers showed some disorientation of the T-tubular system. It is concluded that streptozotocin-diabetes has differential effects on the fine structure of the three fiber types of rat skeletal muscle.Supported by USPHS Grant AM 18280-04, Boston University Grant GRS-405-BI, and a grant-in-aid award from Sigma Xi Society  相似文献   

15.
The diameter, length, and numerical density of capillaries, diameter of muscle fibers, size and numerical density of their profiles, and relative volume of mitochondria in them were determined in the chicken red oxidative gastrocnemius and white glycolytic pectoral muscle during development from day 10 of embryogenesis to six month of postnatal life. The bulk blood flow was measured in these muscles by hydrogen clearance during postembryonic development. During embryogenesis, the fibers of gastrocnemius muscle develop and grow at a higher rate, while during postembryonic development, those of the pectoral muscle develop faster. The density of mitochondrial profiles increases during embryogenesis and decreases after hatching, while their mean size increases, especially in the oxidative fibers, but it somewhat decreases in 6-month old chicks. Redistribution of mitochondria by the fiber section during development takes place in both muscles: they are localized predominantly in the center in 18-day embryos and in the periphery, especially in the gastrocnemius fibers, in 6-month old fowl. At hatching, the lengths of capillaries are similar in both muscles, but as chicks grow, the proportion of longer (more than 600 microm) capillaries in the pectoral muscle sharply increases, while their density and bulk blood flow decrease. Ratios were determined between structural parameters of the capillary bed and mitochondria, on the one hand, and oxygen consumption (ml/min per 1 mm fiber and 100 g muscle mass), on the other.  相似文献   

16.
Mammalian skeletal muscles generate marked amounts of superoxide (O2·) at 37°C, but it is not well understood which is the main source of O2· production in the muscle fibers and how this interferes with muscle function. To answer these questions, O2· production and twitch force responses were measured at 37°C in mechanically skinned muscle fibers of rat extensor digitorum longus (EDL) muscle. In mechanically skinned fibers, the sarcolemma is removed avoiding potential sources of O2· production that are not intrinsically part of the muscle fibers, such as nerve terminals, blood cells, capillaries and other blood vessels in the whole muscle. O2· production was also measured in split single EDL muscle fibers, where part of the sarcolemma remained attached, and small bundles of intact isolated EDL muscle fibers at rest, in the presence and absence of modifiers of mitochondrial function. The results lead to the conclusion that mitochondrial production of O2· accounts for most of the O2· measured intracellularly or extracellularly in skeletal muscle fibers at rest and at 37°C. Muscle fiber excitability at 37°C was greatly improved in the presence of a membrane permeant O2· dismutase mimetic (Tempol), demonstrating a direct link between O2· production in the mitochondria and muscle fiber performance. This implicates mitochondrial O2· production in the down-regulation of skeletal muscle function, thus providing a feedback pathway for communication between mitochondria and plasma membranes that is not directly related to the main function of mitochondria as the power plant of the mammalian muscle cell. excitation-contraction coupling; mechanically skinned fiber; physiological temperature  相似文献   

17.
Fine structure of fast-twitch and slow-twitch guinea pig muscle fibers   总被引:3,自引:0,他引:3  
The guinea pig soleus muscle is a convenient model for the study of slow-twitch intermediate (STI) fiber ultrastructure because it is composed entirely of fibers of this class. Such fibers were compared with fast-twitch red (FTR) and fast-twitch white (FTW) fibers from the vastus lateralis muscle. FTW fibers are characterized by small, sparse mitochondria, a narrow Z line and, an extensive sarcoplasmic reticulum arranged primarily in longitudinal profiles at the A band and with numerous expansions at the I band. Abundant mitochondria with a dense matrix and subsarcolemmal and perinuclear aggregations are typical of FTR fibers. These fibers contain a plexus of sarcoplasmic reticulum at the A band and a less extensive network at the I band. The Z lines are wider (890 ± 74 Å) than those of FTW fibers (582 ± 62 Å). STI intermediate fibers are distinguished from other types by wide Z lines (1205 ± 58 Å), a faint M band, and a less extensive sarcoplasmic reticulum. Compared to FTR fibers, STI fiber mitochondria are usually smaller with less notable subsarcolemmal accumulations. FTW fibers have a more limited capillary supply, rarely contain lipid inclusions, and thus may be restricted to phasic activity. Extensive capillarity, mitochondrial and lipid context, and fast contraction times indicate possible phasic and tonic roles for FTR fibers. STI fibers, characterized by numerous lipid inclusions, extensive capillarity, relatively numerous mitochondria, but slow contraction-relaxation cycles, are morphologically suited for tonic muscle activity.  相似文献   

18.
Our investigation of muscle tissue of fishes, inhabiting the regions with unfavorable ecological conditions (the river Volga), permitted to select four types of degenerative changes in muscle tissue. These alterations are associated with both the phylogenetic status of fish species and ecological dispositions of species. Using different methods of investigation several types of muscle destruction were shown. I. Destruction of myofibrillar apparatus (lysis of protofibrils), with sarcolemma remaining intact. II. Destruction of the myofibrillar apparatus, with sarcolemma, T-system, and sarcoplasmic reticulum being disrupted. III. Invasion of muscle fibers by lymphoid cells and macrophages; with sarcolemma being intact. IV. Lysis of sarcolemma by proteolytic enzymes of lymphoid elements; with muscle fibers being disintegrated. The objects of this study were muscle tissues of 8 fish species (Acipenser gueldenstadti, A. stellatus, A. ruthenus, Lucioprerca lucioperca, Esox lucius, Perca fluviatilis, Tinca tinca, Caprinus carpio). The white muscle degeneration followed the patterns of types I and II, while that of red muscles corresponded to types III and IV. White and red muscles of the Chondrostei fishes (sturgeon, stellate, sterlet) undergo destruction more frequently, than muscles of the Holostei fishes (pike, perch, zander, sazan, tench). Degenerative processes of white and red muscles of fish-eating fishes were more obvious than those of herbivorous fishes.  相似文献   

19.
The diameter, length, and numerical density of capillaries, diameter of muscle fibers, size and numerical density of mitochondrial profiles, and relative volume of mitochondria in them were determined in the chicken red oxidative gastrocnemius and white glycolytic pectoral muscle during development from day 10 of embryogenesis to six month of postnatal life. The bulk blood flow was measured in these muscles by hydrogen clearance during postembryonic development. During embryogenesis, the fibers of gastrocnemius muscle develop and grow at a higher rate, while during postembryonic development, those of the pectoral muscle develop faster. The density of mitochondrial profiles increases during embryogenesis and decreases after hatching, while their mean size increases, especially in the oxidative fibers, but it somewhat decreases in 6-month old chicks. Redistribution of mitochondria across the fiber section during development takes place in both muscles: they are localized predominantly in the center in 18-day embryos and in the periphery, especially in the gastrocnemius fibers, in 6-month old chicks. At hatching, the length of capillaries is similar in both muscles, but as chicks grow, the proportion of longer (more than 600 µm) capillaries in the pectoral muscle sharply increases, while their density and bulk blood flow decrease. Ratios were determined between structural parameters of the capillary bed and mitochondria, on the one hand, and oxygen consumption (ml/min per 1 mm fiber and 100 g muscle mass), on the other.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 135–144.Original Russian Text Copyright © 2005 by Belichenko, Korostyshevskaya, Maksimov, Shoshenko.  相似文献   

20.
The effect of the muscle tissue, ground into a fine chyme, to restoration of the m. gastrocnemius ability to posttraumatic regeneration after x-ray radiation in the doses 20--30 Gy, has been studied in 64 non-inbred white male rats with the body mass about 200 g. The ground muscle is a viscous mass, consisting of finest scraps of muscle fibers, pieces of sarcolemmal tubules with 2--3 nuclei and separate cells. The great destruction of the muscle stroma relieves metabolites to get out and to diffuse. As demonstrate the histological investigations carried out for 1 month, an essential part of the muscle autotransplant, put into the irradiated extremity, regenerates up to formation of differentiated muscle fibers and promotes to restore the regenerative activity in the irradiated m. gastrocnemius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号