首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus , from sympatric populations, were subjected to four cycles of 1 week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum . The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory. During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology.  相似文献   

2.
The compensatory growth responses of individual juveniles of two co- existing species were compared after identical periods of starvation to determine inter-specific similarities and differences. The carnivorous stickleback Gasterosteus aculeatus was compared with the omnivorous minnow Phoxinus phoxinus. Both species experienced 1 or 2 weeks of starvation before being re-fed ad libitum. The two species differed in their response to the starvation periods, with minnows showing a lower weight-specific loss. Both species showed compensatory responses in appetite, growth and to a lesser extent, growth efficiency. Minnows wholly compensated for 1 and 2 weeks of starvation. At the end of the experiment, sticklebacks starved for 2 weeks were still showing a compensatory response and had not achieved full compensation. The compensatory responses of the sticklebacks showed a lag of a week before developing in the re-feeding phase, whereas the response of the minnows was immediate. Analysis of lipid and dry matter concentrations suggested that the compensatory response restored reserve lipids while also bringing the fish back to the growth trajectory of continuously fed fish.  相似文献   

3.
Juvenile three-spined sticklebacks Gasterosteus aculeatus were fed live enchytraeid worms, and mean daily ad libitum consumption in the absence of periods of deprivation was 11·7% of initial body weight. Then, six groups of five replicate fish were subjected to 1, 3 and 6 days without food. Each period of deprivation was followed by 1 day of ad libitum feeding. The sequential order of deprivations differed between groups. Over the sequence of deprivations and re-feedings, mean cumulative consumption did not differ between groups. Mean daily consumption was 19·8% of initial body weight after a 1-day deprivation, 22·3% after 3 days and 19·5% after 6 days. However, consumption in the 24 h after a given length of deprivation also depended on the prior history of deprivation. Specific growth rate over the experiment did not differ between groups. The results provide evidence for an effective regulation of appetite in growing sticklebacks.  相似文献   

4.
为了探究中华鳖(Pelodiscus sinensis)幼体的补偿生长能力,我们对中华鳖幼鳖(平均湿重9.56g)进行如下6种处理:饥饿0(对照)、1、2、3、4周,或者食物限制4周,即只投喂体湿重百分之一的食物;然后对各组进行饱食处理直到10周的实验结束为止。结果发现在饱食期的第一周各饥饿处理组的特殊生长率均显著高于对照组(P〈0.05),但是终体重均没有赶上对照组。当饥饿或食物限制结束时,脂肪含量随着饥饿期的延长而降低,灰分和水分则表现出相反的变化趋势:脂肪含量显著低于对照(P〈0.05),而灰分和水分则显著高于对照(P〈0.05)。蛋白含量则没有显著变化(P〉0.05)。实验结束时,除了灰分外(P〈0.05),其他个体组成指标均恢复到对照组的水平。以上结果表明中华鳖幼体在饥饿胁迫下首先利用脂肪作为主要能源以维持生存,以及在该研究条件下完全的食物剥夺可以诱发其部分补偿生长反应.而部分食物剥夺则不能诱发此反应。  相似文献   

5.
The capacity of three‐spined sticklebacks Gasterosteus aculeatus (initial mean mass 0.280 g) to compensate for recurrent periods of food deprivation of 2, 4 or 6 days followed by 2 days of ad libitum feeding on enchytraeid worms over 56 days was assessed by measuring appetite and growth. Control fish were fed daily. The total number of days on which fish were fed ranged from 14 (6‐day cycle) to 56 (controls). Deprived sticklebacks were hyperphagic on the first day of re‐feeding in a cycle and this hyperphagia increased with successive cycles. Mean daily consumption on first day of refeeding was: controls, 62.9 mg; 2 days, 108 mg; 4 days, 98.8 mg; 6 days, 101 mg. The hyperphagia did not increase as the preceding period of deprivation within a cycle increased. Hyperphagia was not maintained on the second day of re‐feeding. The 4 day and 6 day groups initially showed hypophagia on the second day of re‐feeding. Mean daily consumption on second day of re‐feeding was: controls, 62.6 mg; 2 days, 62.2 mg; 4 days, 54.2 mg; 6 days, 50.0 mg. Over the experiment, consumption on the second day of the 4 day and 6‐day groups increased towards the control level, suggesting a developing compensatory response. The highest mean daily consumption per days fed was shown by the 2 day group. The relationship between number of days fed and total food consumption and specific growth rate suggested that the 2 day group almost compensated for the periods of deprivation. Performance declined for the 4 day and 6 day groups, although even at the highest level of deprivation, a positive growth was achieved. Mean specific growth rate in mass (% per day) was: controls, 2.33; 2 days, 1.89; 4 days, 1.21; 6 days, 0.86. Initial mass and total food consumption accounted for most of the variance in specific growth rate. Other indices of performance including lipid concentration, dry matter concentration and the RNA:DNA ratio in white muscle were positively related to quantity of food consumed by each group. Growth efficiency of sticklebacks in terms of wet mass gained and wet mass consumed over the experimental period was 19.4% and did not differ among control and treatment groups. The growth rates of the sticklebacks experiencing cyclical deprivation were comparable to growth rates previously recorded for sticklebacks fed daily, but consuming similar mean daily rations.  相似文献   

6.
David Álvarez  Neil B. Metcalfe 《Oikos》2007,116(7):1144-1151
Compensatory growth is the faster-than-normal growth that some species exhibit after a period of resource deprivation. Using three-spined sticklebacks as model species we tested the impact of compensatory growth on subsequent escape performance in populations from diverse habitats. We found clear population differences in the rate of compensatory growth, and strong inter-habitat differences in the impact that catch-up growth had on burst swimming performance when measured weeks later. In pond populations growth compensation had little effect on burst swimming, whereas fish from stream populations that exhibited rapid catch-up growth subsequently had slower escape speeds. Those differences could be explained by the non-linear nature of the tradeoff curve, suggesting that habitat-specific selection pressures lead to differences in the importance of burst swimming performance.  相似文献   

7.
The aim of this study was to investigate compensatory growth in juvenile Rutilus caspicus during starvation and re‐feeding periods. The results confirmed the existence of compensatory growth in R. caspicus which depended on the duration of food deprivation. Complete compensatory growth occurred in the fish that were food deprived for at least 3 weeks. Starvation and re‐feeding had no significant effect on the digestive somatic index and intestinal surface areas in the fish that were food deprived for 1 week, while they showed a significant decrease and increase, during starvation and re‐feeding in the fish that were food deprived for 2 and 3 weeks. This knowledge may have application in aquaculture, as appropriate exploitation of compensatory growth can give increased growth rate and feeding efficiency.  相似文献   

8.
C. Fu  §  D. Li  §  W. Hu  §  Y. Wang  § Z. Zhu  §† 《Journal of fish biology》2007,71(SB):174-185
Compensatory growth is a phase of accelerated growth apparent when favourable conditions are restored after a period of growth depression. To investigate if F2 common 'all-fish' growth hormone gene transgenic common carp ( Cyprinus carpio ) could mount compensatory growth, a 9 week study at 29° C was performed. The control group was fed to satiation twice a day throughout the experiment. The other two groups were deprived of feed for 1 or 2 weeks, respectively, and then fed to satiation during the re-feeding period. At the end of the experiment, the live masses of fish in the deprived groups were still significantly lower than those of the controls. During the re-feeding period, size-adjusted mean specific growth rates and mean feed intakes were significantly higher in the deprived fish than in the controls, indicating a partial compensatory growth response in these fish. No significant differences were found in food conversion efficiency between the deprived and control fish during re-feeding, suggesting that hyperphagia was the mechanism responsible for increased growth rates. The proximate composition of the deprived fish at the end of the experiment was similar to that of the control fish. This study is, to our knowledge, the first to report that fast-growing transgenic fish can achieve partial compensation of growth following starvation.  相似文献   

9.
The capacity of hybrid tilapia Oreochromis mossambicus × O. niloticus [23.2 ± 0.2 g (mean ± SE)] to show compensatory growth was assessed in an 8‐week experiment. Fish were deprived of feed for 1, 2 and 4 weeks, and then fed to satiation for 4 weeks; fish fed to satiation during the experiment served as control. Water temperature gradually declined from 28.1 to 25.5°C throughout the experiment. Specific growth rate (SGR) decreased with progressive food deprivation. At the end of deprivation, body weight was lower in the deprived fish than in the control. Fish deprived for 4 weeks exhibited lower contents of lipids and energy in whole body, and higher moisture content and ratio of protein to energy (P/E) than those of the control; they also consumed feed faster than the control when normal feeding was resumed. All deprived fish showed higher food intake (FI) than that of the control during re‐alimentation; however, enhanced SGR was only observed in the fish deprived for 4 weeks. There were no significant differences in digestibility of protein and energy, food efficiency (FE) or energy retention efficiency between the control and deprived fish. At the end of re‐alimentation, deprived fish failed to catch up in body weight with the control, while content of moisture, lipids and energy, and P/E in whole body of the deprived fish did not significantly differ from that of the control. The results of the experiment revealed that the hybrid tilapia reared in freshwater showed partial capacity for compensatory growth following food deprivation of 4 weeks, and that growth compensation was due mainly to increased FI, rather than to improved FE.  相似文献   

10.
随机饥饿和重喂食对小鼠能量代谢和行为的影响   总被引:6,自引:3,他引:3  
为阐明能量代谢和行为的可塑性对动物适应食物资源变化的意义,将成年雄性KM 小鼠随机饥饿驯化4
周,再重喂食驯化4 周。采用食物平衡法测定摄食量、封闭式流体压力呼吸计测定基础代谢率(BMR) 和非颤
抖性产热(NST)、观察法测定行为。随机饥饿使摄食量、消化道重量显著增加,BMR 和NST 显著降低。与对照
组相比,饥饿组休息行为显著增加,活动显著降低。重喂食后,上述指标均恢复到对照组水平,表现出显著的
可塑性。研究结果表明,动物适应难以预测的食物资源短缺的主要策略包括:增加自由取食期间的摄食量;降
低BMR、NST 和活动行为,从而保存身体贮存的能量。能量代谢和活动行为在较短的时间尺度内表现出显著的
可塑性对小鼠适应不可预测的食物资源短缺的应激环境具有重要意义。  相似文献   

11.
Growth, body composition and plasma growth hormone levels were recorded weekly for 24 weeks in rainbow trout Oncorhynchus mykiss . Underyearling rainbow trout were individually identified using coded tags and placed on either a cyclic feeding regime of 3 weeks of deprivation followed by 3 weeks of feeding or a daily feeding regime. No significant difference was found in standard length and mass among the cyclically fed and daily fed fish at the end of the experiment. For cyclically fed fish, the absolute specific growth rate and condition factor reached a maximum during the last week of refeeding. Cyclically fed fish had a significantly higher moisture and protein content and lower lipid levels relative to fish fed daily. Absolute mass and fat loss in the deprivation phase of the feeding cycle decreased in intensity with subsequent feeding cycles, indicating that the fish were acclimatizing to the feeding regime. It was proposed that this response was an adaptation against possible adverse effects in the adults ( e.g. locomotor performance, bone ossification rates, fat deposition rate, growth rate and age at sexual maturity). Plasma growth hormone concentrations were not affected by cyclic feeding indicating that variations in plasma growth hormone concentration are not the cause of compensatory growth in rainbow trout.  相似文献   

12.
Although laboratory and observational studies suggest that many animals are capable of compensatory growth after periods of food shortage, few field experiments have demonstrated structural growth compensation in the wild. Here, we addressed the hypotheses that (i) food restriction can induce structural compensatory growth in free-living animals, (ii) that compensation is proportional to the level of body size retardation and (iii) that compensation induces mortality costs. To test these, wild brown trout (Salmo trutta) yearlings were brought to the lab, tagged individually, subjected to four levels of food deprivation (including a control), released back into the native stream and recaptured after one, five and ten months. Brown trout fully restored condition and partially restored mass within a month, whereas compensation in structure (i.e. body length) was not evident until after five months, supporting hypothesis 1. As the level of growth compensation was similar among the three deprived groups, hypothesis 2 was not supported. A final recapture after winter revealed delayed mortality, apparently induced by the compensatory response in the deprived groups, which is consistent with hypothesis 3. To our knowledge, this is the first field experiment demonstrating structural compensatory growth and associated costs in a wild animal population.  相似文献   

13.
中国对虾继饥饿后的补偿生长研   总被引:22,自引:3,他引:19  
1999年7至8月份,在25.0±0.5℃条件下对中国对虾(湿重,1.454±0.150g)进行了不同时间的饥饿处理后再供食的恢复生长实验。对照组C连续饱食投喂32d;处理组S4、S8和S12分别饥饿4、8和12d后再饱食投喂28、24和20d。主要结果如下饥饿结束时各处理组的干重和湿重显著低于对照组(P<0.05);实验结束时S4组和对照组间的干重和湿重差异不显著(P>0.05),而S8和S12两组的干重和湿重仍显著低于对照组(P<0.05);恢复生长后各处理组的湿重摄食率显著高于对照组(P<0.05)。实验结果表明,中国对虾继饥饿后再恢复喂食出现完全或部分补偿生长效应,且这种补偿生长效应主要是通过恢复生长阶段食欲增大,摄食水平提高实现的。  相似文献   

14.
Life history characteristics and resulting fitness consequences manifest not only in an individual experiencing environmental conditions but also in its offspring via trans-generational effects. We conducted a set of experiments to assess the direct and trans-generational effects of food deprivation in the Glanville fritillary butterfly Melitaea cinxia. Food availability was manipulated during the final stages of larval development and performance was assessed during two generations. Direct responses to food deprivation were relatively minor. Food-deprived individuals compensated, via increased development time, to reach a similar mass as adults from the control group. Delayed costs of compensatory growth were observed, as food-deprived individuals had either reduced fecundity or lifespan depending on the type of feeding treatment they had experienced (intermittent vs. continuous). Female food deprivation did not directly affect her offspring’s developmental trajectory, but the way the offspring coped with food deprivation. Offspring of mothers from control or intermittent starvation treatments reached the size of those in the control group via increased development time when being starved. In contrast, offspring of mothers that had experienced 2 days of continuous food deprivation grew even larger than control animals, when deprived of food themselves. Offspring of food-deprived Glanville fritillary initially showed poor immune response to parasitism, but not later on in development.  相似文献   

15.
Alternating periods of food deprivation with those of unlimited provision of food depressed the growth of Arctic charr, Salvelinus alpinus , below that of controls. Fish that were deprived of food and then fed on alternate weeks (1:1) were larger than those that were exposed to periods of 1 5- or 3-week deprivation and feeding (1·5:1·5 or 3:3). On receiving excess food supplies following 24 weeks on the restricted feeding regimes the previously-restricted fish grew more rapidly than the controls. The greatest compensatory growth was displayed after the 3:3 regime, followed by the 1·5: 1·5 and then the 1:1 feeding regime. At the termination of the experiment there were no significant differences in body weight between fish fed according to the different regimes during the period that food restriction was imposed. Growth patterns of the immature males and females were similar, but mature males were significantly lighter than the immature fish by the end of the experiment. Both immature and maturing fish displayed a compensatory growth response on return to adequate feeding. Beginning food restriction in May did not influence the proportions of male fish ( c . 60%) which were mature in the autumn.  相似文献   

16.
To investigate the nature of compenstory growth in fish, an 8 week study at 28°C was performed on juvenile gibel carp Carassius auratus gibelio weighing 6·6 g. Fish were starved for 0 (control), 1 (S1) or 2 (S2) weeks and then re-fed to satiation for 5 weeks. Weekly changes in weight gain, feed intake and body composition were monitored during re-feeding. No significant difference was found in final body weight between the three groups, indicating complete compensation in the deprived fish. The deprived groups caught up in body weight with that of the control after 2 weeks of re-feeding. Body fat: lean body mass ratio was restored to the control level within 1 week of re-feeding. In the re-feeding period, weekly gains in body weight, protein, lipid, ash and energy in the S1 group were significantly higher than in the controls for 1 week. For the S2 group, weekly gains in body weight, lipid, ash and energy were higher than in the controls for 2 weeks, and gain in protein was higher than in the controls for 3 weeks, though gain in body energy became elevated again during the last 2 weeks of the experiment. Feed intake remained higher than the control level for 3 weeks in the S1 group and 4 weeks in the S2 group. Growth efficiency was not significantly different among the three groups in any of the weeks during re-feeding. Compensatory responses in growth and especially feed intake tended to last longer than the recovery of body composition.  相似文献   

17.
A field enquiry mentioned the potential positive impact of a feed restriction on the health of young rabbits, but no objective information relates the intake to digestive health. The effects of a post-weaning feed restriction strategy were thus studied on digestive health and growth and carcass parameters of the growing rabbit, using a monofactorial design that produces a quantitative linear reduction of the intake, from ad libitum (AL group) to 80%, 70% and 60% of AL. The study was performed simultaneously in six experimental sites, on 1984 growing rabbits (496 per treatment) collectively caged from weaning (34 to 38 days of age, depending on the site) to slaughter (68 to 72 days). The feeding programme was applied as followed: restriction during 21 days after weaning, and then ad libitum till slaughter. During the feed restriction period the growth rate was linearly reduced with the restriction level, by 0.5 g/day for each percent of intake reduction. When returning to ad libitum intake (after 54 days old) a compensatory growth and a higher feed efficiency occurred. Therefore, the impact of the feeding programme on the slaughter weight (SW) was significant (-4.5 g/% of restriction), but relatively moderate: the weight loss of the more-restricted rabbits (60%) reached 7.7% (-200 g) compared to the AL group. Over the whole fattening period, the feed restriction reduced linearly and significantly the feed conversion (FC) (-0.0077 unit/% of restriction). Carcass traits were little affected by the feeding programme, except for a slightly lower decrease of the dressing percentage (mean: 1.2 units between AL and the three restricted groups). On the six experimental sites, mortality and morbidity were always caused by acute digestive disorders, namely diarrhoea and/or caecal impaction. Independent of the treatment, the mortality rate strongly varied according to the site (between 7% and 18% from weaning to 54 days and for the AL group). During feed restriction, the mortality was significantly lower from a restriction threshold of 80% (meanly: -9% compared to AL). The morbidity was also significantly reduced (-6%) for the two most restricted groups (70% and 60%). The favourable effect of a lower intake on health did not persist after returning to ad libitum intake (54 days to slaughter), since mortality and morbidity were not significantly different among the treatments. Such a feeding strategy thus represents a double benefit in terms of feed costs and lower losses of young rabbits.  相似文献   

18.
While dietary restriction usually increases lifespan, an intermittent feeding regime, where periods of deprivation alternate with times when food is available, has been found to reduce lifespan in some studies but prolong it in others. We suggest that these disparities arise because in some situations lifespan is reduced by the costs of catch-up growth (following the deprivation) and reproductive investment, a factor that has rarely been measured in studies of lifespan. Using three-spined sticklebacks, we show for the first time that while animals subjected to an intermittent feeding regime can grow as large as continuously fed controls that receive the same total amount of food, and can maintain reproductive investment, they have a shorter lifespan. Furthermore, we show that this reduction in lifespan is linked to rapid skeletal growth rate and is due to an increase in the instantaneous risk of mortality rather than in the rate of senescence. By contrast, dietary restriction caused a reduction in reproductive investment in females but no corresponding increase in longevity. This suggests that in short-lived species where reproduction is size dependent, selection pressures may lead to an increase in intrinsic mortality risk when resources are diverted from somatic maintenance to both growth and reproductive investment.  相似文献   

19.
A total of 48 female pigs (Large White × Landrace × Duroc cross) were used to determine whether a compensatory feed regime influenced performance, carcass composition and the level of plasma IGF-1. Pigs of initial age 73 days were fed a commercial diet at 0.70 of ad libitum (R) for 40 days followed by a return to ad libitum feeding for a further 42 days. The control group was fed ad libitum (A) throughout. Groups of animals on R and A feed regimes were slaughtered at the end of restriction period (SL1), 2 days after refeeding ad libitum (SL2) to establish the more immediate effects of refeeding on IGF levels, and after 42 days refeeding (SL3; n = 8 for each group). As expected, during the restriction period, average daily live weight gain in all the slaughter groups of R pigs was significantly lower than A pigs (P < 0.01); there was no significant difference in feed conversion ratios. In the re-alimentation period of SL3, R pigs grew 12.9% faster (P = 0.033), indicating compensatory growth. At SL1, there was a trend for carcass weight (P = 0.108) of A pigs to be higher than R pigs, but at SL2 live weight and carcass weight of A pigs were significantly heavier than R pigs (P < 0.05), but not at SL3. For killing-out percentage, there was no difference in SL1. After refeeding for 2 days (SL2) and 42 days (SL3), R pigs had significantly lower killing-out percentage than A pigs (P < 0.05). As a proportion of live weight, R pigs had smaller heart, kidney and liver (P < 0.05) than A pigs at SL1. At SL2, only the kidney was smaller in the restricted group (P < 0.05) and there were no significant differences in SL3. As a proportion of carcass weight, Longissimus dorsi was heavier in the R pigs at SL1 (P = 0.108) and SL2 (P < 0.05), but not at SL3. At SL1, there was a trend for intramuscular fat of A pigs to be higher than R pigs. The plasma IGF-1 level was lower in R pigs than A pigs (P = 0.010) at SL1, and slightly lower at SL2 (P = 0.110), with no significant differences at SL3. Dietary restriction period influenced plasma IGF-1 levels, which returned to the ad libitum group levels when animals were refed, as did live weight and carcass weight. It appears that the internal organs and possibly fat, but not muscles, underwent a compensatory response when animals were refed.  相似文献   

20.
Compensatory growth is the phase of rapid growth, greater than normal or control growth, which occurs upon adequate refeeding following a period of undernutrition. The effect of feed cycling periods (periods of starvation followed by periods of refeeding), ration level and repetitive feed cycles on the compensatory growth response in rainbow trout were evaluated in two experiments. A feeding cycle of 3 weeks starvation and 3 weeks feeding produced better results in terms of average percentage changes in weight and length, and in specific growth rate, than either 1 week and 1 week or 2 weeks and 2 weeks feed cycles. The fish on the 3 weeks starvation and 3 weeks feeding cycle did as well as, if not better than, the constantly fed controls over one or two complete cycles, though the controls were fed more than twice the amount of feed. Three ration levels were compared using a 3-week starvation and 3-week feeding period. The only effect of increasing ration level was to decrease conversion efficiency, indicating overfeeding. Carcass analysis of moisture, fat, protein and ash showed no significant differences between the controls and an experimental group on a 3 weeks starvation, 3 weeks feeding cycle after one complete cycle. Possible mechanisms underlying the compensatory growth response are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号