首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized CD4-CD8- double negative (DN) thymocytes that express TCR-alpha beta and represent a minor thymocyte subpopulation expressing a markedly skewed TCR repertoire. We found that DN TCR-alpha beta + thymocytes resemble mature T cells in that they (a) are phenotypically CD2hiCD5hiQa2+HSA-, (b) appear late in ontogeny, and (c) are susceptible to cyclosporin A-induced maturation arrest. In addition, we found that DNA sequences 5' to the CD8 alpha gene were demethylated relative to their germline state, suggesting that DN TCR-alpha beta + thymocytes are derived from cells that had at one time expressed their CD8 alpha gene locus. Because DN TCR-alpha beta + thymocytes are known to express an unusual TCR repertoire with significant overexpression of V beta 8, we were interested in examining the possible role played by self-Ag in shaping their TCR repertoire. It has been suggested that DN TCR-alpha beta + thymocytes are derived from potentially self-reactive thymocytes that have escaped clonal deletion by down-regulating their surface expression of CD4 and/or CD8 determinants. However, apparently inconsistent with such an hypothesis, we found that the frequency of DN thymocytes expressing various anti-self TCR (V beta 6, V beta 8.1, V beta 11, V beta 17a) were not increased in strains expressing their putative self-Ag, but instead were either unaffected or significantly reduced in those strains. With regard to V beta 8 expression among DN TCR-alpha beta + thymocytes, V beta 8 overexpression in DN TCR-alpha beta + thymocytes appeared to be independent of, and superimposed on, the developmental appearance of the basic DN thymocyte repertoire. Even though V beta 8 overexpression appeared to be generated by a mechanism distinct from that generating the rest of the DN TCR-alpha beta + thymocyte repertoire, we found that super-Ag against which V beta 8 TCR react introduced into the neonatal differentiation environment also significantly reduced, rather than increased, the frequency of DN TCR-alpha beta + V beta 8+ thymocytes. Thus, the present study is consistent with DN TCR-alpha beta + thymocytes being mature cells derived from CD8+ precursors, and documents that their TCR repertoire can be influenced, at least negatively, by either self-Ag or Ag introduced into the neonatal differentiation environment. However, we found no evidence to support the hypothesis that DN TCR-alpha beta + thymocytes are enriched in cells expressing TCR reactive against self-Ag.  相似文献   

2.
The CD4 and CD8 molecules play an important role in the stimulation of T cells and in the process of thymic education. Most mature T cells express the alpha beta TCR and either CD4 or CD8; however, there is a small population of alpha beta+ TCR T cells that lack both CD4 and CD8. Little is known of the biology of the CD4- CD8- (double-negative) alpha beta+ TCR T cells or the nature of the Ag to which they may respond. These cells not only represent a novel population of T cells but also provide useful biologic tools to study the roles that CD4 and CD8 play in T cell activation. In this study we have addressed two questions. Firstly, whether CD4- CD8- alpha beta+ TCR T cells have functionally active TCR and, secondly, whether CD4 or CD8 is required for the activation of T cells by bacterial enterotoxins. Six double-negative alpha beta+ TCR T cell clones, propagated from two healthy donors, were challenged with a panel of nine bacterial enterotoxins. The V alpha and V beta usage of their TCR was determined by polymerase chain reaction. All of the CD4-CD8- clones proliferated in response to at least one of the enterotoxins, in a V beta-specific manner. The proliferative response of the CD4-CD8- alpha beta+ TCR T cell clones was similar in magnitude to that exhibited by CD4+ T cell clones of known V beta expression. These data clearly show that the CD4 and CD8 molecules are not required for the activation of untransformed human T cells by bacterial enterotoxins. Furthermore, these results indicate that CD4-CD8- alpha beta+ TCR T cells, normally present in all individuals, are not functionally silent, because they can be stimulated via their TCR. Their physiologic role, like that of gamma delta T cells, remains to be elucidated.  相似文献   

3.
4.
The functional capabilities of human peripheral blood CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones were examined. The clones were generated by culturing purified populations of CD3+CD4-CD8- and CD3+CD4+CD8+ T cells at limiting dilution (0.3 cell/well) in the presence of PHA, rIL-2, and irradiated PBMC as feeders. Twelve CD3+CD4-CD8- and 5 CD3+CD4+CD8+ clones were generated. Clonality was documented by analyzing TCR gamma- and beta-chain rearrangement patterns. All CD3+CD4-CD8- clones were stained by the TCR-delta 1 mAb that identifies a framework epitope of the TCR delta-chain, but not by mAb WT31 that identifies the TCR-alpha beta on mature T cells. In contrast, the CD3+CD4+CD8+ clones were all stained by WT31 and not by TCR-delta 1. All 17 clones were screened for various functional activities. Each secreted IL-2, IFN-gamma, and lymphotoxin/TNF-like factors when stimulated with immobilized mAb to CD3 (64.1), albeit in varying quantities. These clones secreted far less IL-2 and IFN-gamma than CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta expressing clones, but comparable amounts of lymphotoxin/TNF. All clones also functioned as MHC-unrestricted cytotoxic cells. This activity was comparable to that mediated by the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. Nine of 12 CD3+CD4-CD8- and 4 of 5 CD3+CD4+CD8+ clones were able to support B cell differentiation when activated by immobilized anti-CD3, but usually not as effectively as the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. The differences in the functional capabilities of the various clones could not be accounted for by alterations in the signaling capacity of the CD3 molecular complex as mAb to CD3 induced comparable increases in intracellular free calcium in each clone examined. When clones were stimulated with PWM, each suppressed B cell differentiation supported by mitomycin C-treated fresh CD4+ T lymphocytes. Suppression was dependent on the number of clone cells added to culture, but could be observed with as few as 12,500 cells per microtiter well. Phenotypic analysis of the clones revealed that all expressed CD29, CD11b, and the NKH1 surface Ag. These results demonstrate that the CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones exhibit many of the functional characteristics of mature T cells, although they produce IL-2 and IFN-gamma and provide help for B cell differentiation less effectively than CD3+CD4+CD8- and CD3+CD4-CD8+ alpha beta T cell clones.  相似文献   

5.
Grafting of cells from B10.D2 (H-2d) donors into H-2 compatible lethally irradiated (DBA/2 x B10.D2)F1 hosts results in a severe graft-vs-host reaction (GVHR), developed against DBA/2 non-H-2 Ag, with only 0 to 10% of animals surviving. This GVHR mortality rate is dramatically reduced (90 to 100% of animals survive) by donor preimmunization against Mlsa determinants. The protection against GVHR correlates with a decreased B10.D2 anti-DBA/2 proliferative response in vitro. Both in vivo and in vitro phenomena are associated with activation of CD5+ suppressor T cells in the spleens of immunized mice. The present work was designed to study the origin of these suppressor cells and to further characterize their phenotype. The results show that significant suppression is not inducible in "B" mice. In contrast, in mice that were only thymectomized or else pretreated in vivo with anti-CD4 or anti-CD8 mAb, the suppressor cells are activated as efficiently as in normal mice. The suppression of GVHR mortality and proliferative responses in vitro is lost after depletion from preimmunized splenocytes of CD5+ T cells and remains unaltered after depletion of CD4+ or CD8+ T cells or both. Depletion of asialo GM1+ cells removes all NK activity, whereas the suppression is decreased only slightly. FACS analysis showed that double-negative (DN) cells from normal and immunized mice contain both CD3+ and CD3- cells; the vast majority of the CD3+ DN T cells express the alpha/beta T cell receptor. Suppression of GVHR and of proliferative responses in vitro are abrogated after elimination of CD3+ cells. These results suggest that Mlsa generated suppressor cells: 1) are derived from post-thymic long-lived T cell precursors; 2) are low asialo GM-1+ but do not exhibit NK activity; 3) belong to a subset of peripheral CD5+ DN T cells bearing a CD3-associated alpha/beta-heterodimer.  相似文献   

6.
The regulation of apoptosis in mature CD4+ or CD8+ alphabeta+ T cells has been well studied. How the survival and death is regulated in peripheral CD4-CD8- (double negative, DN) alphabeta+ T cells remains unknown. Recent studies suggest that peripheral DN T cells may play an important role in the regulation of the immune responses mediated by CD4+ or CD8+ T cells. Here, we used immunosuppressive DN T cell clones to elucidate the mechanisms involved in the regulation of death and survival of alphabeta+ DN T cells. The DN T cell clones were generated from the spleen cells of 2C transgenic mice, which express the transgenic TCR specific for Ld and permanently accepted Ld+ skin allografts after pretransplant infusion of Ld+ lymphocytes. We report that 1) the mature DN T cells are highly resistant to TCR cross-linking-induced apoptosis in the presence of exogenous IL-4; 2) Fas/Fas-ligand and TNF-alpha/TNFR pathways do not play an apparent role in regulating apoptosis in DN T cells; 3) the DN T cells constitutively express a high level of Bcl-xL, but not Bcl-2; 4) both Bcl-xL and Bcl-2 are up-regulated following TCR-cross-linking; and 5) IL-4 stimulation significantly up-regulates Bcl-xL and c-Jun expression and leads to mitogen-activated protein kinase phosphorylation in DN T cells, which may contribute to the resistance to apoptosis in these T cells. Taken together, these results provide us with an insight into how mature DN T cells resist activation-induced apoptosis to provide a long-term suppressor function in vivo.  相似文献   

7.
The V beta 8-specific mAb F23.1 and KJ16 were used as fluorescent stains to test for TCR expression on the surface of subpopulations of early, CD4-CD8- (L3T4-Ly-2-) thymocytes from adult CBA mice. A surprisingly high proportion (27%) of Ly-2-L3T4- thymocytes were strongly F23.1 and KJ16 positive. No positive cells were detected among Ly-2-L3T4- thymocytes from V beta 8-negative SJL mice. In contrast to the adult thymus, Ly-2-L3T4- cells from embryonic CBA thymus lacked F23.1-positive cells. Subsets of adult CBA Ly-2-L3T4- thymocytes were separated to determine which expressed V beta 8. The major subset, Ly-1 low B2A2-M1/69+Thy-1+Pgp-1-, representing a phenotype similar to embryonic Ly-2-L3T4- thymocytes and the phenotype commonly isolated from adult thymocytes as Ly-1 "dull," lacked cells strongly positive for F23.1. In contrast, a series of subsets of adult CBA Ly-2-L3T4- thymocytes which were B2A2-M1/69- and Pgp-1+ all included strongly F23.1-positive cells. A minor subset, negative for most markers except Pgp-1 and presumed on the basis of this phenotype and some reconstitution studies to include the earliest intrathymic precursors, contained 28% F23.1-positive cells. However, no F.23.1-positive cells were detected in equivalent "prethymic" populations from bone marrow or from athymic mouse spleen. The subsets of Ly-2-L3T4- thymocytes which were Ly-1 high, B2A2-M1/69-, and Pgp-1+ all contained about 70% F23.1-positive cells, indicating a V beta 8 usage much higher than the mature T cell average. These results indicate that a series of distinct developmental events have occurred within these CD4-CD8- thymocytes previously considered as a single group of early precursor cells, and that some aspects of repertoire selection may be occurring amongst thymocytes which lack CD4 or CD8.  相似文献   

8.
The T cell populations present in normal murine bone marrow have not been previously analyzed in detail, mainly because of their relative rarity. In order to permit such analyses, bone marrow T cells were enriched by depleting Mac1-positive cells, which constitute 65 to 90% of bone marrow cells (BMC), and then studied by two-color flow cytometry. Analysis of the remaining cells revealed that the T cell profile of adult murine bone marrow is markedly different from that of other lymphoid organs. A very high proportion of bone marrow CD3+ cells (approximately one-third) are CD4-CD8-. CD3+CD4-CD8- cells are much more concentrated among BMC T cells than among thymocytes or splenic T cells, suggesting that bone marrow may be either a site of extrathymic TCR gene rearrangement, or a major site to which such cells home from the thymus. The expression of NK1.1 was also evaluated on Mac1-depleted BMC populations. Surprisingly, up to 39% of alpha beta TCR+ BMC were found to express NK1.1. Most alpha beta TCR+NK1.1+ BMC also expressed CD4 or CD8. NK1.1+ alpha beta TCR+ cells represented a much greater proportion of BMC T cells than of other lymphoid (splenocyte or thymocyte) T cell populations. Mac1-depleted BMC of nude mice contained very few cells with this phenotype. These results are consistent with the hypothesis that NK1.1+ alpha beta TCR+ cells are generated primarily in the thymus of normal animals and migrate preferentially to bone marrow, where they may function as regulatory elements in hematopoiesis.  相似文献   

9.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

10.
The vast majority of circulating lymphocytes that express the alpha,beta TCR in association with CD3 also express either CD4 or CD8 molecules, which are thought to act as important accessory structures in HLA class II- and I-restricted T cell functions, respectively. In the current study alpha,beta TCR+ clones devoid of detectable CD4 or CD8 were generated by repeated stimulation of fresh CD3+,CD4-,CD8- cells with an allogeneic lymphoblastoid cell line in the presence of conditioned medium containing IL-2. Except for the absence of CD4 and CD8, which was associated with undetectable levels of CD4 and CD8 mRNA, the clones were phenotypically indistinguishable from classical CD3+,alpha,beta TCR+ cells. Furthermore, they mediated potent cytolysis of their specific stimulator line but did not kill irrelevant LCL or NK-sensitive targets. mAb to CD3 and the alpha,beta TCR inhibited cytolysis, suggesting that the clones use the TCR/CD3 complex to recognize and respond to their targets. mAbs to CD2 and CD11a also inhibited cytolysis, indicating that the clones use these accessory molecules to interact with their targets. Finally, cytolysis was inhibited by an HLA-A,B,C framework-specific mAb (W6/32) as well as a mAb (MA2.1) specific for an HLA-A2 epitope. These results demonstrate that CD3+,alpha,beta TCR+,CD4-,CD8- cytotoxic clones can be generated from the peripheral blood of healthy adults, and use their TCR/CD3 complexes to function in an HLA class I-restricted manner.  相似文献   

11.
A mAb directed against the CD3 molecule was used to identify a subset of CD3+, CD4-, CD8- T cells previously undefined in the peripheral lymphoid organs of the mouse. Biochemical analysis of CD3+, CD4-, CD8- splenocytes revealed that the vast majority of these cells express one of at least two distinct CD3-associated TCR gamma delta heterodimeric structures, but no detectable TCR alpha beta. One disulfide-linked heterodimer (77 kDa) is composed of two chains of 45 to 46 and 32 kDa. The latter chain was immunoprecipitated with an anti-TCR C gamma 1/C gamma 2 antiserum and was not glycosylated. An antiserum produced against a peptide corresponding to the C-terminal region of the predicted C gamma 4 gene product immunoprecipitated additional heterodimers (80 to 90 kDa). One heterodimer, composed of disulfide-linked 41- to 45-kDa protein (including a V gamma/C gamma 4 component), is expressed on a T cell hybridoma, DN-1.21, which was derived from fused splenic CD3+, CD4-, CD8- T cells. Another V gamma/C gamma 4-containing heterodimer is composed of disulfide-linked 46- to 47-kDa glycoproteins. These findings demonstrate that CD3+, CD4-, CD8- T cells present in the peripheral lymphoid organs express a variety of paired TCR gamma delta proteins. Unlike CD3+, CD4-, CD8- thymocytes, these cells express high levels of C gamma 4, but little, if any TCR alpha beta.  相似文献   

12.
13.
A fibroblastoid cell line TSt-4 was established from fetal thymus tissue of C57BL/6 mice. When fetal thymus (FT) cells or CD4-8- (DN) cells of adult thymuses were cultured on the monolayer of TSt-4, a considerable proportion of lymphocytes expressed CD4 or both CD4 and CD8 within 1 day, and the CD4+CD8- cells were maintained further while the CD4+8+ cells disappeared by Day 5. A large proportion of cells generated from DN cells but not FT cells was shown to express CD3 and T cell receptor alpha beta. Addition of recombinant interleukin (IL)-7 into the cultures resulted in a marked increase of cell recovery without virtual change in differentiation process of alpha beta lineage. The present work strongly suggests that thymic fibroblasts play an important role in T cell differentiation and IL-7 contributes to supporting proliferation of differentiated cells.  相似文献   

14.
We have used the intra-thymic transfer system to investigate the population dynamics of thymocyte and mature T cell subsets in the absence of continuing precursor input from the bone marrow. We have followed the development and life span of CD4+ and CD8+ thymocyte subsets and mature peripheral T cells from intra-thymically injected adult or fetal CD4-8- thymic precursors. Both precursor types proliferated, differentiated, and exported to peripheral lymphoid tissues alpha beta-TCR+CD4+8- and CD4-8+ progeny which formed a stable, long-lived component of the peripheral T cell pool. The production of phenotypically mature thymocytes and peripheral T cells occurred more rapidly from fetal CD4-8- precursors. CD4+8-:CD4-8+ ratios among peripheral progeny of intra-thymically-injected CD4-8- precursors were initially normal, but they steadily declined among progeny of the fetal precursors. Thus, there appear to be differences in the life span and/or proliferative capacity of mature T cells derived from embryonic vs adult progenitors. In addition to the predominant CD4+8- and CD4-8+ subsets of peripheral T cells, a minor (1 to 20%) population of Thy-1+CD3+4-8- T cells was identified among peripheral progeny of intra-thymically-injected CD4-8- thymocytes, as well as in lymph nodes of unmanipulated animals. A total of 20 to 34% of this subset expressed V beta 8+ TCR and the majority were CD5hi, Pgp-1+, and J11d-. The function and specificity of this newly identified population of thymically derived peripheral T cells remains to be investigated.  相似文献   

15.
16.
The predominant T cell subset in the bone marrow of specific pathogen-free C57BL/Ka and BALB/c mice expressed the alpha beta+ TCR CD4- CD8- surface phenotype. Purified C57BL/Ka alpha beta+ TCR CD4- CD8- marrow cells obtained by cell sorting suppressed the MLR of C57BL/Ka responder and BALB/c stimulator spleen cells. Although the percentage of typical T cells in the spleen was markedly reduced in adult nude mice or normal neonatal mice as compared to the normal adult, the percentage of alpha beta+ TCR CD4- CD8- cells in the spleen and marrow was not. The percentage of "self-reactive" V beta 5+ T cells in the BALB/c spleen was markedly reduced as compared to that in the C57BL/Ka spleen. However, the percentages in the bone marrow were similar. The results indicate that the predominant subset of marrow T cells in these pathogen-free mice differ with regard to surface marker phenotype, function, dependence on the adult thymus, and deletion of certain self-reactive V beta receptors as compared to typical spleen T cells. The marrow T cells appear to develop directly from marrow precursors without rearranged beta chain genes during a 48 hour in vitro culture.  相似文献   

17.
18.
IL-7 maintains the T cell precursor potential of CD3-CD4-CD8- thymocytes.   总被引:10,自引:0,他引:10  
We and other investigators have reported that IL-4 (in the presence of PMA) or IL-7 (used alone) induce proliferation of both adult and fetal (gestation day 15) CD4-CD8- thymocytes. These results suggested that these cytokines may be growth factors for pre-T cells. However, we recently observed that among adult CD4-CD8- thymocytes, only the CD3+ subset proliferates in response to IL-7, whereas IL-4 + PMA induces proliferative responses in both CD3- and CD3+ subsets. Thus, we concluded that IL-7 used alone is not a potent growth stimulus for adult thymic CD3-CD4-CD8- triple negative (TN) T cell precursors. Interestingly, the viability of adult TN thymocytes in culture was improved by IL-7 for up to 1 wk, in spite of the inability of IL-7 to induce significant [3H]TdR incorporation in these cells. After culture in IL-7 for 4 days, the viable cells remained CD4-CD8-, but 25 to 35% expressed CD3 whereas the rest remained CD3-. In contrast, most of the cells cultured with IL-4 + PMA for 4 days remained TN. To investigate whether adult TN thymocytes that survive in vitro in the presence of IL-4 + PMA or IL-7 retain T cell progenitor potential, we tested whether they could reconstitute lymphoid cell-depleted (2-deoxyguanosine-treated) fetal thymus organ cultures. Our results demonstrate that TN cells cultured in IL-7 retain T cell progenitor potential.  相似文献   

19.
A small subpopulation (about 2%) of normal CD3+ human T lymphocytes lacks both CD4 and CD8 antigens. We have cloned these cells from peripheral blood lymphocytes (PBL) obtained from healthy individuals and from a patient with severe combined immunodeficiency. Six out of seven CD3+4-8-clones exert strong cytolytic activity against a variety of so-called NK-susceptible and -nonsusceptible tumor target cells. Their target cell specificity spectrum can virtually be as wide as that of CD3-NK cell-derived clones, with strong lytic capacity. Some of these clones also exert antibody-dependent cellular cytotoxicity (ADCC), a characteristic of NK cell-derived clones but not of CD3+4+ or CD8+ mature T cell-derived clones. Such CD3+ T cell clones do not express the CD16 (IgG Fc receptor) antigen, but as we demonstrate here, the CD16 antigen can be identified on CD3+4-8-clones. Both ADCC activity and CD16 antigen expression are lower in CD3+4-8- than in CD3- NK cell clones. Lytic activity of mature CD3+4+ or CD8+ and CD3- NK cell clones can be augmented, respectively, by anti-CD3 or anti-CD16 monoclonal antibodies (MAb), but that of CD3+4-8- clones are augmented by both MAb. Lytic activity of CD3+4+ or CD8+ clones is considerably enhanced after 3 hr of incubation with recombinant IL 2, as found for CD3- NK cells. Enhancement of lytic activity of allospecific CD3+4+ or CD8+ clones requires 18 hr of incubation. Thus, CD3+4-8-16+ cells share several features with CD3- NK cells. However, they express the CD3 antigen, which is characteristic for CD4+ or CD8+ mature T cells. Our results also indicate that although CD3+4-8- clones react with five preparations of anti-CD3 MAb tested, these clones do not express a classical CD3+/Ti alpha, beta antigen receptor complex. This is suggested by the finding that the CD3+4-8- clones do virtually not express the common epitope of the T cell receptor alpha, beta-chains as identified by the WT31 MAb. These CD3+4-8- lymphocytes may represent functionally mature lymphocytes of a distinct T cell subpopulation having a particular immune function.  相似文献   

20.
The T lymphocytes that accumulate in vast numbers in the lymphoid tissues of lpr/lpr (lpr) mice express a TCR-alpha beta that is polyclonally rearranged, and yet is devoid of surface CD4 or CD8 (CD4-8-) as well as CD2. lpr CD2- alpha beta + CD4-8- T cells exhibit an apparent block in signal transduction, in that when activated they produce little or no IL-2 and proliferate minimally in the absence of exogenous IL-2. In contrast to the predominant hyporesponsive alpha beta + CD4-8- T cells, we observe that a minor subset (1 to 2%) of lpr lymph node CD4-8- cells expresses a TCR-gamma delta and can proliferate upon activation with PMA and ionomycin in the absence of exogenous IL-2. Furthermore, these responsive gamma delta T cells express surface CD2. The functional and phenotypic distinctions of lpr gamma delta T cells led us to identify an analogous minor (4 to 10%) subset of alpha beta + CD4-8- cells in lpr thymus and lymph nodes that does express CD2. Similar to the gamma delta subset, these CD2+ alpha beta + CD4-8- cells are also capable of proliferation and IL-2 production. Thus the capacity for IL-2 production and proliferation by a small proportion of lpr CD4-8- T cells, either alpha beta + or gamma delta +, correlates with their expression of surface CD2. This correlation is supported by the observation that the lpr liver contains actively cycling alpha beta + CD4-8- lymphocytes that are strikingly enriched for CD2 expression. Consequently, unlike the vast proportion of abnormal lpr CD2- CD3+ CD4-8- cells, the CD2+ CD3+ CD4-8- T cells may not express the basic lpr defect, or else are not affected by its presence. These studies suggest that expression of the lpr abnormality may be restricted to a particular T cell lineage. This functional correlation with CD2 expression may be more broadly applicable to phenotypically similar subsets of normal thymocytes, and possibly peripheral tolerized T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号