首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersion of carotenoid droplets in permeabilized goldfish xanthophores is dependent on ATP, F-actin, and cytosol. We report here that the motor (ATPase, translocator) resides with the permeabilized cell remnants and not in the cytosol. We also report that the carotenoid droplets have an ATPase that is not conventional myosin, dynein, or an ion pump. Its activity appears to correlate with the actin content of the carotenoid droplet preparation. A carotenoid droplet protein of Mr 72,000 (p72) is shown to be labeled by irradiation with 8-azido-ATP with concomitant loss of ATPase activity of the carotenoid droplets. We propose that this protein may be the ATPase responsible for carotenoid droplet dispersion.  相似文献   

2.
Organelle translocations are essential cellular processes. Although much progress has been made with regards to microtubule-dependent organelle translocations, little is known about actin-dependent organelle translocation(s) except cytoplasmic streaming in Nitella. On the other hand, there is indirect evidence that actin-dependent organelle translocation may be involved in secretion. We now present evidence that the dispersion of the pigment organelles carotenoid droplets in goldfish xanthophores is apparently actin dependent and that this process may be related to secretory processes. We show that, in digitonin-permeabilized goldfish xanthophores, the pigment organelles can be induced to disperse by a combination of cAMP, ATP, and xanthophore cytosol. This induced dispersion is inhibited by DNase I, phalloidin, or anti-actin, but not by anti-tubulin or anti-intermediate filament proteins, suggesting a dependence on F-actin. Since the dispersion of carotenoid droplets and secretion both involve outward translocation of organelles, we tested the possibility that cytosols of secretory tissues have similar activity. Such activity was indeed found in different tissues, apparently in parallel with the secretory activity of the tissues, suggesting that pigment dispersion in xanthophores and some secretory processes may share a common component.  相似文献   

3.
In goldfish xanthophores, the formation of pigment aggregate requires: 1) that a pigment organelle (carotenoid droplet) protein p57 be in the unphosphorylated state; 2) that self-association of pigment organelles occur in a microtubule-independent manner; and 3) that pigment organelles via p57 associate with microtubules. In the fully aggregated state, the pigment organelles are completely stationary. Pigment dispersion is initiated by activation of a cAMP-dependent protein kinase, which phosphorylates p57 and allows pigment dispersion via an active process dependent on F-actin and a cytosolic factor. This factor is not an ATPase, and its function is unknown. However, its abundance in different tissues parallels secretory activity of the tissues, suggesting a similarity between secretion and pigment dispersion in xanthophores. The identity of the motor for pigment dispersion is unclear. Experimental results show that pigment organelles isolated from cells with dispersed pigment have associated actin and ATPase activity comparable to myosin ATPase. This ATPase is probably an organelle protein of relative molecular mass approximately 72,000, and unlikely to be an ion pump. Isolated pigment organelles without associated actin have 5x lower ATPase activity. Whether this organelle ATPase is the motor for pigment dispersion is under investigation. The process of pigment aggregation is poorly understood, with conflicting results for and against the involvement of intermediate filaments.  相似文献   

4.
We have previously shown that the dispersion and aggregation of carotenoid droplets in goldfish xanthophores are regulated, respectively, by phosphorylation and dephosphorylation of a carotenoid droplet protein p57. There is a basal level of p57 phosphorylation of p57 in unstimulated cells, which is greatly stimulated by adrenocorticotropic hormone (ACTH) or cyclic adenosine monophosphate (cAMP) acting via cAMP-dependent protein kinase. We have also observed that, in permeabilized xanthophores, pigment dispersion can be induced when cAMP is replaced by fluoride. Since p57 has multiple phosphorylation sites, there is the question of whether all p57 phosphorylation is by cAMP-dependent protein kinase or whether phosphorylation by cAMP-independent protein kinase coupled with inhibition of phosphatase activity by fluoride can replace cAMP-dependent protein kinase and that the ability of fluoride to replace cAMP for pigment dispersion in permeabilized cells is probably due to activation of adenylcyclase. We also show that ACTH causes an approximately threefold increase in the level of cAMP in these cells.  相似文献   

5.
In intact goldfish xanthophores, the phosphorylation of a pigment organelle (carotenoid droplet) protein, p57, appears to play an important role in adrenocorticotropin (ACTH)- or cAMP-induced pigment organelle dispersion while the dephosphorylation of this protein upon withdrawal of ACTH or cAMP is implicated in pigment aggregation. In this paper, we report the cAMP-dependent phosphorylation of this protein in cell-free extracts of xanthophores as determined by the incorporation of 32P from [gamma-32P]ATP. As is the case in intact cells, p57 is the predominant protein phosphorylated in the presence of cAMP. The cAMP-dependent protein kinase which phosphorylates p57 is not bound to the isolated organelles but is found in the soluble portion of the cell extracts. Hence, the phosphorylation of p57 requires the carotenoid droplets bearing the substrate, soluble extract containing the kinase, cAMP (half-maximal activation at 0.5 microM), and Mg2+ (optimal at 5 mM or higher). The presence of protein phosphatase(s) in these extracts was shown indirectly by the stimulation of phosphorylation by fluoride. The phosphorylation of p57 does not appear to require a cell-specific kinase as soluble extracts of goldfish dermal nonpigment cells also phosphorylate p57 associated with isolated carotenoid droplets. Furthermore, using a constant amount of carotenoid droplets, a linear relationship was demonstrated between the rate of p57 phosphorylation and the amount of extract present in the assays. These results suggest that p57 is phosphorylated directly by a cAMP-dependent protein kinase and that the activity of this enzyme is important in regulating the intracellular movement of the pigment organelles of the xanthophore.  相似文献   

6.
A method is described for the subcellular fractionation of goldfish xanthophores. The procedure produces relatively pure fractions of caroteniod droplets, pterinosomes, cytosol and what appears to be plasma membrane. The presence of a distinct pattern of proteins is shown to be associated with the carotenoid droplets. Treatment of the xanthophores with ACTH affects the buoyant density of some carotenoid droplets and stimulates the phosphorylation of a polypeptide associated with the carotenoid droplets.  相似文献   

7.
Triton-insoluble cytoskeleton of nonpigment cells has bound protein kinase that phosphorylates, with or without added cAMP, tubulins and the intermediate filament proteins p60, p56, p53, and p45a to give multiple charge variants. In the absence of 8-Br-cAMP, Triton-insoluble cytoskeletons from xanthophores also phosphorylate p60, p56, and p45a, but not p53; tubulin phosphorylation may also be reduced. In the presence of 8-Br-cAMP, p53, as well as several other peptides, are phosphorylated. One of these latter peptides was identified as the carotenoid droplet (pigment organelle) protein p57, whose phosphorylation and dephosphorylation precede pigment dispersion and aggregation respectively (Lynch et al.: J. Biol. Chem. 261:4204-4211, 1986). The amount of pp57 produced depends on the state of pigment distribution in the xanthophores used to prepare the cytoskeletons for labeling. With cytoskeletons from xanthophores with aggregated pigment, pp57 is a major labeled phosphoprotein seen in two-dimensional gels. With cytoskeletons prepared from xanthophores with dispersed pigment, the yield of labeled pp57 is greatly reduced (by at least 90%). Together with earlier results, we propose that, in the aggregated state, p57 serves to bind carotenoid droplets to the cytoskeletons, most likely the microtubules. The significance of other cAMP-dependent phosphorylation reactions is unknown but may be related to cAMP-induced cytoskeleton rearrangement in intact xanthophores.  相似文献   

8.
We reported previously that, in cultured goldfish xanthophores, dispersion of aggregated carotenoid droplets (CDs) requires the specific phosphorylation of the CD protein p57 by a cAMP-dependent protein kinase and the presence of cytosol. We report here that, in permeabilized cells, the addition of the catalytic subunit of cAMP-dependent protein kinase and ATP phosphorylates p57 and converts the CDs from an immobile to a mobile state (first stage of CD dispersion). However, the CDs are restricted to the vicinity of the original site of the CD aggregate and do not actually disperse (second stage of CD dispersion) unless cytosol is also added. We propose that this process may be related to aspects of secretory processes.  相似文献   

9.
Summary The hormone-induced pigment dispersion in primary cultures of xanthophores of goldfish (Carassius auratus L.) has been shown to involve the dispersion of not only carotenoid droplets but also of smooth endoplasmic reticulum. The dispersion of these organelles is inhibited by cytochalasin B and is accompanied by thinning of the cell body, thickening of the processes, and also overall changes in cellular morphology (process extension) under certain conditions. Electron microscopic examination of heavy meromyosin treated glycerinated xanthophores in scales revealed the presence of actin filaments in these cells.This work was supported, in part, by grants AM-5384 and AM-13724 from U.S.P.H.S.  相似文献   

10.
The cytoskeleton of goldfish xanthophores contains an abundance of unique dense structures (400 nm in diameter) that are absent in goldfish nonpigment cells and are probably remnants of pterinosomes. No major difference in protein composition between xanthophores and nonpigment cells (without these structures) was found that could account for these structures. In xanthophores, these structures are foci of radiating filaments. The addition or withdrawal of ACTH causes a radical rearrangement of the xanthophore cytoskeleton accompanying redistribution of carotenoid droplets, namely, the virtual exclusion of these dense bodies with associated filaments from the space occupied by the carotenoid droplet aggregate vs. a relatively even cytoplasmic distribution of these structures when the carotenoid droplets are dispersed. These changes in cytoskeletal morphology are not accompanied by any major changes in the protein or phosphoprotein composition of the cytoskeleton.  相似文献   

11.
By whole-cell transmission electron microscopy (WCTEM), we recently demonstrated that carotenoid droplets are transported by elongating or retracting endoplasmic reticular cisternae in goldfish xanthophores. Here we report that permeabilized xanthophores demonstrate immunogold reactivity against several proteins involved in organelle translocation. The gold labeling against β-tubulin and the intermediate filament protein p45a were found on microtubules and intermediate filaments. Labeling with antiactin was found on nonidentifiable structures, on vesicles of unknown origin, occasional labeling on carotenoid droplets, and on occasional microfilaments. Immunoreactivity was demonstrated with anti-p57 on the carotenoid droplet surface, confirming previous results (Lynch et al., 1986a,b). Labeling with anti-PCD6 subunit (of the inositol trisphosphate/ryanodine receptor) was demonstrated on carotenoid droplets suggesting they possess calcium channels. Anti-MAP 1C (dynein) immunolabeling was generally seen on club-shaped structures in the cytomatrix and on carotenoid droplets. Finally, immunogold labeling with anti-MAP 2a + 2b was seen on a meshwork of microfilaments and intermediate filaments. Finally, this is the first report of a WCTEM technique for permeabilized cells that reveals immunoreactive elements, organelles, and cytomatrix components without the additional requirements of extraction or fracturing.  相似文献   

12.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

13.
Summary Treatment of cultured goldfish xanthophores by hormone (ACTH) or c-AMP induces not only pigment dispersion, but subsequent outgrowth of processes, and pigment translocation into these processes. These latter effects are shown to proceed as follows: First the edge of the cytoplasmic lamellae takes on a scalloped contour with numerous protrusions. These presumably serve as nucleation centers where short microfilament bundles are assembled, Later, the microfilament bundles elongate (grow), often resulting in an extension of the protrusions to become filopodia while the proximal end of the microfilaments penetrates into the thicker portion of the cellular process which now houses the pigment, i.e., the carotenoid droplets. Carotenoid droplets appear to migrate along the microfilament bundles, or cytoplasmic channels associated with them, into the filopodia. Finally, some of the filopodia become broader, thicker and laden with carotenoid droplets and are then recognized by light microscopy as pigmented cellular processes. The microfilaments have been shown to be actin filaments by their thickness, the size of their subunits, and decoration by heavy meromyosin. Evidence is presented which suggests that the growth of these actin filaments may come about by recruitment from short F-actin strands found in random orientation in adjacent areas.  相似文献   

14.
In 1925, Wilson listed, in his classic third edition of Cell in Development and Heredity, four theories for the morphological and physiological characteristics of cytoplasm; each theory provided some sort of explanation as to the mechanism(s) of organelle translocations. During the past twenty years, cell biologists have focused their attentions on the cell's cytoskeleton, microtrabecular lattice, and associated mechanochemical motors which drive organelles along cytoskeletal tracks. A number of cell types have been used to study organelle translocations, but chromatophores, pigment cells, from cold-blooded vertebrates have been one of the more popular models. This article reviews some of the research findings during the past twenty years, particularly those involving cytoplasmic elements: i.e, microfilaments, intermediate filaments, microtubules, and mechanochemical motors. In addition, it contrasts the proposed involvement of these elements in organelle translocations with the endoplasmic reticulum, a tubulovesicular organelle, which we recently demonstrated is responsible, through its elongation or retraction, for the translocations of carotenoid droplets in goldfish xanthophores and swordtail fish erythrophores. Here, the carotenoid droplets are not free in the cytoplasm and do not translocate via cytoskeletal tracks, but instead are attached to or are a part of the endoplasmic reticulum. On the other hand, carotenoid droplets of squirrel fish erythrophores are free in the cytoplasm and appear to translocate via microtubules. Finally, the rates of pigmentary organelle translocations are reviewed in light of the participation of the cytoskeletal elements with the endoplasmic reticulum.  相似文献   

15.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

16.
Treatment of goldfish xanthophores with adrenocorticotropin (ACTH) or cyclic AMP (cAMP) induces the centrifugal movement of their pigment organelles from the center of the cells. Using purified xanthophores pulse labeled with 32Pi, we have shown that the dispersion of the organelles is accompanied by the phosphorylation of a pair of polypeptides, termed p57. After fractionation on sucrose gradients, nearly all of the p57 is found associated with the pigment organelles. The phosphorylation induced by ACTH or cAMP apparently occurs at multiple sites on p57. The minimal effective doses of ACTH or cAMP required to induce full pigment dispersion also fully stimulate the phosphorylation of p57. Increased phosphorylation of p57 is detectable within a minute after stimulating the cells and appears to be near completion during the early phases of pigment dispersion. Upon withdrawal of ACTH, these events are reversed; the pigment organelles reaggregate toward the center of the cells and p57 is dephosphorylated. Again, dephosphorylation commences soon after ACTH is withdrawn and is complete before the organelles have completely reaggregated. These results suggest a novel mechanism for governing the movement of these organelles which acts on the organelles themselves through the phosphorylation and dephosphorylation of p57.  相似文献   

17.
Purification of a putative K+-ATPase from Streptococcus faecalis   总被引:9,自引:0,他引:9  
We have purified a novel membrane ATPase from Streptococcus faecalis by the following procedure: extraction of membranes with Triton X-100 followed by fractionation of the extract by successive DEAE-cellulose chromatography, hydroxylapatite chromatography and Cm-Sepharose chromatography. The overall yield was 5%. The purified ATPase appears to consist of a single polypeptide component of Mr = 78,000. The Triton-solubilized purified enzyme has a specific activity of approximately 50 mumol of ATP hydrolyzed per min per mg, is dependent on phospholipids for activity, and is strongly inhibited by vanadate (I50 = 3 microM). Maximal ATPase activity is displayed at pH 7.3. Mg2+-ATP, for which the enzyme has a Km of 60 microM, is the best substrate. The ATPase forms an acylphosphate intermediate that can also be detected in native membranes as the major acylphosphate component. The purified ATPase, when reconstituted into soybean phospholipid vesicles, exhibits coupling, e.g. the ATPase activity can be stimulated at least 8-fold by valinomycin in the presence of potassium. Based on these observations we conclude that the enzyme we have purified is an ion-motive ATPase, most likely a K+-ATPase.  相似文献   

18.
The membrane-bound coupling factor from Mycobacterium phlei was solubilized from membrane vesicles by washing with low ionic strength buffer or 0.25 M sucrose. The solubilized enzyme exhibited coupling factor, latent ATPase, and succinate oxidation-stimulating activity. Purification by affinity chromatography using Sepharose coupled to ADP yielded a homogeneous preparation of latent ATPase which was purified about 200-fold with an 84% yield in a single step. Purified latent ATPase exhibited coupling factor activity but no succinate oxidation-stimulating activity. The molecular weight of latent ATPase was determined to be 250,000 +/- 10,000 by Sephadex G-200 chromatography. The ATPase was unmasked by trypsin treatment and activated by Mg2+ ion. However, trypsin treatment inactivated the coupling factor activity in the purified enzyme, indicating that the catalytic sites for ATPase and coupling activity are different. Unlike mitochondrial ATPase, latent ATPase from M. phlei was not cold-labile. Of the nucleoside triphosphates, UTP, ITP, and epsilon-ATP (1-N6-ethenoadenosine triphosphate) were hydrolyzed to a lesser extent compared to ATP. Kinetic data showed that ADP acted as a competitive inhibitor of latent ATPase activity with a Ki of 5 x 10(-3) M. Uncouplers of oxidative phosphorylation and respiratory inhibitors did not affect the latent ATPase activity, while sodium azide (0.1 mM) inhibited the latent ATPase activity.  相似文献   

19.
We determined that the ATPase activity contained in preparations of neuronal microtubules is associated with a 50,000-dalton polypeptide by four different methods: (a) photoaffinity labeling of the pelletable ATPase fraction with [gamma-32P]-8-azido-ATP; (b) analysis of two- dimensional gels (native gel X SDS slab gel) of an ATPase fraction solubilized by treatment with dichloromethane; (c) ATPase purification by glycerol gradient sedimentation and gel filtration chromatography of a solvent-released ATPase fraction, (d) demonstration of the binding of affinity-purified antibody to the 50-kdalton polypeptide to ATPase activity in vitro. Beginning with preparations of microtubules we have purified the ATPase activity greater than 700-fold and estimate that the purified enzyme has a specific activity of 20 mumol Pi x mg-1 x min- 1 and comprises 80-90% of the total ATPase activity associated with neuronal microtubules. With affinity-purified antibody we also demonstrate cross-reactivity to the 50-kdalton subunits of mitochondrial F-1 ATPase and show that the antibody specifically labels mitochondria in PtK-2 cells. Biochemical comparisons of the enzymes reveal similar but not identical subunit composition and sensitivity to mitochondrial ATPase inhibitors. These studies indicate that the principal ATPase activity associated with microtubules is not contained in high molecular weight proteins such as dynein or MAPs and support the hypothesis that the 50-kdalton ATPase is a membrane protein and may be derived from mitochondria or membrane vesicles with F-1-like ATPase activity.  相似文献   

20.
Microtubule protein purified from brain tissue by cycles of in vitro assembly-disassembly contains ATPase activity that has been postulated to be associated with microtubule-associated proteins (MAPs) and therefore significant for studies of microtubule-dependent motility. In this paper we demonstrate that greater than 90% of the ATPase activity is particulate in nature and may be derived from contaminating membrane vesicles. We also show that the MAPs (MAP-1, MAP-2, and tau factors) and other high molecular weight polypeptides do not contain significant amounts of ATPase activity. These findings do not support the concept of "brain dynein" or of MAPs with ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号