首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The serine 202 to phenylalanine substitution within the cytoplasmic interdomain loop of Tet(C) greatly reduces tetracycline resistance and efflux activity (Saraceni-Richards, C. A., and Levy, S. B. (2000) J. Biol. Chem. 275, 6101-6106). Second-site suppressor mutations were identified following hydroxylamine and nitrosoguanidine mutagenesis. Three mutations, L11F in transmembrane 1 (TM1), A213T in the central interdomain loop, and A270V in cytoplasmic loop 8-9, restored a wild type level of resistance and an active efflux activity in Escherichia coli cells bearing the mutant tet(C) gene. The Tet S202F protein with the additional A270V mutation was expressed in amounts comparable with the original mutant, whereas L11F and A213T Tet(C) protein mutants were overexpressed. Introduction of each single mutation into the wild type tet(C) gene by site-directed mutagenesis did not alter tetracycline resistance or efflux activity. These secondary mutations may restore resistance by promoting a conformational change in the protein to accommodate the S202F mutation. The data demonstrate an interaction of the interdomain loop with other distant regions of the protein and support a role of the interdomain loop in mediating tetracycline resistance.  相似文献   

6.
The complete nucleotide sequence of the tetracycline resistance plasmid pAG1 from the gram-positive soil bacterium Corynebacterium glutamicum 22243 (formerly Corynebacterium melassecola 22243) was determined. The R-plasmid has a size of 19,751 bp and contains at least 18 complete open reading frames. The resistance determinant of pAG1 revealed homology to gram-negative tetracycline efflux and repressor systems of Tet classes A through J. The highest levels of amino acid sequence similarity were observed to the transmembrane tetracycline efflux protein TetA(A) and to the tetracycline repressor TetR(A) of transposon Tn1721 with 64 and 56% similarity, respectively. This is the first time a repressor-regulated tet gene has been found in gram-positive bacteria. A new class of tetracycline resistance and repressor proteins, termed TetA(Z) and TetR(Z), is proposed.  相似文献   

7.
Septic arthritis and sepsis are common and feared complications of staphylococcal infections, and the increasing antibiotic resistance among staphylococci urge the extended research for virulence factors involved in these diseases. Staphylcoccus aureus produces a number of virulence factors controlled by several global regulatory genes including agr and sarA. MgrA is a recently identified global regulator, belonging to the SarA subfamily, which upregulates expression of several virulence factors including capsule and sortase. In addition, MgrA has been shown to regulate antibiotic resistance and decrease bacterial autolysis. In this study we have assessed the role of mgrA gene expression on induction and progression of septic arthritis and sepsis. Mice inoculated with the mgrA mutant displayed significantly less severe arthritis and showed a significantly better weight development, than wild-type inoculated mice. Importantly, all 10 mice inoculated with the mgrA mutant survived as compared to 70% mortality in the wild-type inoculated mice (p=0.003). In addition, the mgrA mutant showed significantly less bacterial persistence in kidneys as compared to the wild-type strain. We conclude that mgrA regulates virulence factors important for establishment and progression of septic arthritis and sepsis.  相似文献   

8.
Inner membrane Tet proteins encoded by tet genes in gram-negative bacteria mediate resistance to tetracycline (Tcr) by directing its export. Total sequences for class A, B, and C tet genes demonstrate that their products have a common ancestor, with Tet(A) and Tet(C) being more closely related (78% identical) than either is to Tet(B) (45% identical). The N- and C-terminal halves of Tet(B) and Tet(C) appear to comprise separate domains, and trans-complementation observed between tetracycline sensitive mutants in either domain of Tet(B) suggests separate but interactive functions for these domains. In this present study, interdomain hybrid genes were constructed to express hybrid tet products whose N- and C-terminal halves were derived from different family members [Tet(A/C), Tet(B/C), and Tet(C/B)]. Tet(A/C) specified a level of Tcr comparable to wild-type Tet(C) and 60% that of Tet(A), indicating that domains from these closely related tet products can function in cis. Although neither Tet(B/C) nor Tet(C/B) hybrids conferred significant Tcr, cells producing both of these types of hybrid proteins expressed substantial Tcr, indicating that productive interactions can occur in trans between Tet(B/C) and Tet(C/B). Taken together, these results suggest that highly specific interactions between the N- and C-terminal domains are necessary for Tcr and do not occur in individual hybrids derived from the more distant relatives, Tet(B) and Tet(C). This requirement for specific interactions suggests that N- and C-terminal domains have coevolved in each member of the Tet family.  相似文献   

9.
Previously, only one ribosome protection type of a tetracycline resistance gene, tetQ, had been identified in Bacteroides spp. During an investigation of anaerobic bacteria present in swine feces and manure storage pits, a tetracycline-resistant Bacteroides strain was isolated. Subsequent analysis showed that this new Bacteroides strain, Bacteroides sp. strain 139, did not contain tetQ but contained a previously unidentified tetracycline resistance gene. Sequence analysis showed that the tetracycline resistance gene from Bacteroides sp. strain 139 encoded a protein (designated Tet 36) that defines a new class of ribosome protection types of tetracycline resistance. Tet 36 has 60% amino acid identity over 640 aa to TetQ and between 31 and 49% amino acid identity to the nine other ribosome protection types of tetracycline resistance genes. The tet(36) region was not observed to transfer from Bacteroides sp. strain 139 to another Bacteroides sp. under laboratory conditions. Yet tet(36) was found in other genera of bacteria isolated from the same swine manure pits and from swine feces. Phylogenetic analysis of the tet(36)-containing isolates indicated that tet(36) was present not only in the Cytophaga-Flavobacter-Bacteroides group to which Bacteroides sp. strain 139 belongs but also in gram-positive genera and gram-negative proteobacteria, indicating that horizontal transfer of tet(36) is occurring between these divergent phylogenetic groups in the farm environment.  相似文献   

10.
Tetracycline resistance in the Enterobacteriaceae is mediated by a number of genetically related, usually plasmid-borne, determinants which specify an efflux system involving an inner membrane protein, Tet. Attempts to overproduce the Tn10 (Class B)-encoded Tet in Escherichia coli by cloning the structural gene tet downstream of the lambda PL promoter under regulation by temperature-sensitive lambda repressor cI857 were unsuccessful; induction at 42 degrees C resulted in filamentous, non-viable cells containing little detectable overproduction of the protein. However, cells containing tet fused to lacZ were resistant to tetracycline at 30 degrees C and synthesized modest amounts of a large fusion protein when induced at 42 degrees C. Fusion of the N-terminal half or the first 38 amino acids of tet to lacZ did lead to increased production of fusion proteins. Fusions could be purified by size or by LacZ immunoaffinity or substrate-affinity chromatography. In the latter method, selected detergents were required to counteract nonspecific binding of Tet to the adsorbant. Amino acid sequencing of the N-terminus of Tet-LacZ fusion proteins indicated that most molecules were blocked at this terminus. The sequence of an unblocked subpopulation was consistent with that expected from the nucleotide sequence. A collagen peptide linker, genetically placed between tet and lacZ, allowed recovery of purified Tet protein after collagenase treatment of the purified fusion protein.  相似文献   

11.
12.
Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.  相似文献   

13.
A multidrug efflux pump gene (cmeB) was identified from the published Campylobacter jejuni genome sequence. Secondary structural analysis showed that the gene encoded a protein belonging to the resistance nodulation cell division (RND) family of efflux transporters. The gene was inactivated by insertional mutagenesis. Compared with the wild-type strain (NCTC 11168), the resultant knockout strain (NCTC 11168-cmeB::kan(r)) displayed increased susceptibility to a range of antibiotics including beta-lactams, fluoroquinolones, macrolides, chloramphenicol, tetracycline, ethidium bromide, the dye acridine orange and the detergent sodium dodecyl sulfate. Accumulation of ciprofloxacin was increased in the knockout mutant, but carbonyl cyanide m-chlorophenyl hydrazone, a proton motive force inhibitor, had less effect upon ciprofloxacin accumulation in the knockout mutant compared with NCTC 11168. These data show that the identified gene encodes an RND-type multi-substrate efflux transporter, which contributes to intrinsic resistance to a range of structurally unrelated compounds in C. jejuni. This efflux pump has been named CmeB (for Campylobacter multidrug efflux).  相似文献   

14.
Both domains, alpha and beta, of the cytoplasmic membrane-localized Tet proteins encoded by the tet gene family (classes A through E) are required for resistance to tetracycline (Tcr) in gram-negative bacteria. Two inactive proteins, each containing a mutation in the opposite domain, are capable of complementation to produce Tcr. Similarly, inactive hybrid proteins expressed by interdomain gene hybrids constructed between tet(B) and tet(C) [tet(B) alpha/(C) beta and tet(C) alpha/(B) beta] together produce significant Tcr via trans complementation (R.A. Rubin and S. B. Levy, J. Bacteriol. 172:2303-2312, 1990). A derivative of tet(B) was constructed to express the two domains of Tet(B) as separate polypeptides, neither containing intact the central, hydrophilic interdomain region. Cells harboring this tet(B) mutant expressed Tcr at about 20% the level conferred by intact tet(B). As expected, no detectable amount of a full-length Tet protein was expressed. A polypeptide corresponding to the alpha domain was observed. Interdomain hybrids between tet(B) and tet(C) containing a frameshift at the fusion junction, designed to result in expression of each of the four domains on separate polypeptides, showed trans complementation without production of detectable full-length proteins. Levels of Tcr were greater than or equal to those previously observed in complementations using full-length hybrid proteins. These results strongly suggest that polypeptides harboring individual alpha and beta domains, lacking an intact interdomain region, can interact productively in the cell to confer Tcr.  相似文献   

15.
16.
The resistance of Gram- bacteria to the broad-spectrum antibiotic tetracycline (Tc) results from energy-dependent drug efflux mediated by the tet gene product, the cytoplasmic membrane Tet protein. Amino acid (aa) sequences deduced from total tet nucleotide sequences of three different resistance determinants (classes A, B and C) indicate that the protein products [Tet(A), Tet(B), and Tet(C)] share a common ancestor. Hydropathic analysis of Tet sequences predicts twelve transmembrane segments in each protein, with six occurring in each half of the molecule. More importantly, the linear distributions of these segments in the N- and C-terminal halves are nearly identical, suggesting that the two halves of each Tet protein are related by a process of tandem gene duplication and divergence. Indeed, a variable but significant conservation of sequence was detected among the N- and C-terminal halves for all possible comparisons of the three proteins. Such conservation was not observed within other prokaryotic integral membrane proteins or when other prokaryotic proteins were compared to Tet halves. Similarity, both in sequence and in predicted transmembrane structural organization, strongly suggests that a common ancestor of Tet(A), Tet(B), and Tet(C) arose by duplication of a gene reading frame specifying a transmembrane protein of approximately 200 aa residues. The two halves of Tet proteins correspond to the two domains, alpha and beta, which have distinct, complementary roles in Tc efflux. Nevertheless, selective constraints to function in the cytoplasmic membrane have apparently led to maintenance of similar patterns of secondary structural organization in these complementary domains.  相似文献   

17.
Resistances to tetracycline and mercury were identified in an environmental strain of Serratia marcescens isolated from a stream highly contaminated with heavy metals. As a step toward addressing the mechanisms of coselection of heavy metal and antibiotic resistances, the tetracycline resistance determinant was cloned in Escherichia coli. Within the cloned 13-kb segment, the tetracycline resistance locus was localized by deletion analysis and transposon mutagenesis. DNA sequence analysis of an 8.0-kb region revealed a novel gene [tetA(41)] that was predicted to encode a tetracycline efflux pump. Phylogenetic analysis showed that the TetA(41) protein was most closely related to the Tet(39) efflux protein of Acinetobacter spp. yet had less than 80% amino acid identity with known tetracycline efflux pumps. Adjacent to the tetA(41) gene was a divergently transcribed gene [tetR(41)] predicted to encode a tetracycline-responsive repressor protein. The tetA(41)-tetR(41) intergenic region contained putative operators for TetR(41) binding. The tetA(41) and tetR(41) promoters were analyzed using lacZ fusions, which showed that the expression of both the tetA(41) and tetR(41) genes exhibited TetR(41)-dependent regulation by subinhibitory concentrations of tetracycline. The apparent lack of plasmids in this S. marcescens strain, as well as the presence of metabolic genes adjacent to the tetracycline resistance locus, suggested that the genes were located on the S. marcescens chromosome and may have been acquired by transduction. The cloned Tet 41 determinant did not confer mercury resistance to E. coli, confirming that Tet 41 is a tetracycline-specific efflux pump rather than a multidrug transporter.  相似文献   

18.
Phylogenetic analysis of tetracycline resistance genes encoding the ribosomal protection proteins (RPPs) revealed the monophyletic origin of these genes. The most deeply branching class, exemplified by tet and otrA, consisted of genes from the antibiotic-producing organisms Streptomyces rimosus and Streptomyces lividans. With a high degree of confidence, the corresponding genes of the other seven classes (Tet M, Tet S, Tet O, Tet W, Tet Q, Tet T, and TetB P) formed phylogenetically distinct separate clusters. Based on this phylogenetic analysis, a set of PCR primers for detection, retrieval, and sequence analysis of the corresponding gene fragments from a variety of bacterial and environmental sources was developed and characterized. A pair of degenerate primers targeted all tetracycline resistance genes encoding RPPs except otrA and tet, and seven other primer pairs were designed to target the specific classes. The primers were used to detect the circulation of these genes in the rumina of cows, in swine feed and feces, and in swine fecal streptococci. Classes Tet O and Tet W were found in the intestinal contents of both animals, while Tet M was confined to pigs and Tet Q was confined to the rumen. The tet(O) and tet(W) genes circulating in the microbiota of the rumen and the gastrointestinal tract of pigs were identical despite the differences in animal hosts and antibiotic use regimens. Swine fecal streptococci uniformly possessed the tet(O) gene, and 22% of them also carried tet(M). This population could be considered one of the main reservoirs of these two resistance genes in the pig gastrointestinal tract. All classes of RPPs except Tet T and TetB P were found in the commercial components of swine feed. This is the first demonstration of the applicability of molecular ecology techniques to estimation of the gene pool and the flux of antibiotic resistance genes in production animals.  相似文献   

19.
The genetic determinants responsible for the resistances against the antibiotics tetracycline [tet(M), tet(O), tet(S), tet(K) and tet(L)], erythromycin (ermA,B,C; mefA,E; msrA/B; and ereA,B) and chloramphenicol (cat) of 38 antibiotic-resistant Enterococcus faecium and Enterococcus faecalis strains from food were characterised. In addition, the transferability of resistance genes was also assessed using filter mating assays. The tet(L) determinant was the most commonly detected among tetracycline-resistant enterococci (94% of the strains), followed by the tet(M) gene, which occurred in 63.0% of the strains. Tet(K) occurred in 56.0% of the resistant strains, while genes for tet(O) and tet(S) could not be detected. The integrase gene of the Tn916-1545 family of transposons was present in 81.3% of the tetracycline resistant strains, indicating that resistance genes might be transferable by transposons. All chloramphenicol-resistant strains carried a cat gene. 81.8% of the erythromycin-resistant strains carried the ermB gene. Two (9.5%) of the 21 erythromycin-resistant strains, which did not contain ermA,B,C, ereA,B and mphA genes harboured the msrC gene encoding an erythromycin efflux pump, which was confirmed by sequencing the PCR amplicon. In addition, all E. faecium strains contained the msrC gene, but none of the E. faecalis strains. Transfer of the genetic determinants for antibiotic resistance could only be demonstrated in one filter mating experiment, where both the tet(M) and tet(L) genes were transferred from E. faecalis FAIR-E 315 to the E. faecalis OG1X recipient strain. Our results show the presence of various types of resistance genes as well as transposon integrase genes associated with transferable resistances in enterococci, indicating a potential for gene transfer in the food environment.  相似文献   

20.
The Tet(L) protein encoded in the Bacillus subtilis chromosome and the closely related Tet(K) protein from Staphylococcus aureus plasmids are multifunctional antiporters that have three cytoplasmic efflux substrates: a tetracycline-divalent metal (TC-Me(2+)) complex that bears a net single positive charge, Na+, and K+. Tet(L) and Tet(K) had been shown to couple efflux of each of these substrates to influx of H+ as the coupling ion. In this study, competitive cross-inhibition between K+ and other cytoplasmic efflux substrates was demonstrated. Tet(L) and Tet(K) had also been shown to use K+ as an alternate coupling ion in support of Na+ or K+ efflux. Here they were shown to couple TC-Me(2+) efflux to K+ uptake as well, exhibiting greater use of K+ as a coupling ion as the external pH increased. The substrate and coupling ion preferences of the two Tet proteins differed, especially in the higher preference of Tet(K) than Tet(L) for K+, both as a cytoplasmic efflux substrate and as an external coupling ion. Site-directed mutagenesis was employed to test the hypothesis that some feature of the putative "antiporter motif," motif C, of Tet proteins would be involved in these characteristic preferences. Mutation of the A157 in Tet(L) to a hydroxyamino acid resulted in a more Tet(K)-like K+ preference both as coupling ion and efflux substrate. A reciprocal S157A mutant of Tet(K) exhibited reduced K+ preference. Competitive inhibition among substrates and the parallel effects of the single mutation upon K+ preference, as both an efflux substrate and coupling ion, are compatible with a model in which a single translocation pathway through the Tet(L) and Tet(K) transporters is used both for the cytoplasmic efflux substrates and for the coupling ions, in an alternating fashion. However, the effects of the A157 and other mutations of Tet(L) indicate that even if there are a shared binding site and translocation pathway, some elements of that pathway are used by all substrates and others are important only for particular substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号