首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cAMP receptor protein (CRP) requires cAMP for an allosteric change and regulates more than 150 genes in Escherichia coli. In this study, the modular half of cAMP receptor protein was used to investigate the allosteric signal transmission pathway induced by cAMP binding. The activation of CRP upon cAMP binding is indicated to be realignment of the two subunits within the CRP dimer. The interaction of loop 3 and Phe136 do not involve in signal transmission.  相似文献   

2.
3.
The properties of the two monoclonal antibodies which were found to inhibit cyclic AMP receptor protein (CRP)-stimulated abortive initiation without affecting cAMP binding (Li, X.-M., and Krakow, J. S. (1986) J. Biol. Chem. 260, 4378-4383) have been characterized. Binding of monoclonal antibody (mAb) 66C3 to CRP is stimulated by cAMP while CRP binding by mAb 63B2 is not affected by cAMP. Binding of cAMP-CRP-mAb 63B2 to the lac P+ DNA is completely inhibited. Whereas cAMP-CRP forms a stable complex only at the CRP site 1 of the lac P+ promoter fragment, cAMP-CRP-mAb 66C3 binds to both site 1 and site 2. DNase I footprinting using a HpaII fragment carrying only the lac site 2 does not show any protection by cAMP-CRP-mAb 66C3. With the lac L8UV5 promoter, binding is not seen at either the L8 site 1 or the unaltered site 2. In the presence of 25% glycerol, cAMP-CRP-mAb 66C3 binds to both L8 site 1 and site 2. RNA polymerase is unable to bind to the cAMP-CRP-mAb 66C3-lac P+ complex. In the presence of RNA polymerase, cAMP-CRP forms a stable complex at the L8 site 1, the subsequent addition of mAb 66C3 results in the release of CRP. The CRP present in the lac P+ open promoter complex is partially resistant to subsequent incubation with mAb 66C3. The results provide further evidence regarding possible contacts between CRP and RNA polymerase involved in establishing the open promoter complex.  相似文献   

4.
The monoclonal antibody (mAb) 64D1 was found to inhibit cAMP binding by the cAMP receptor protein (CRP) from Escherichia coli (Li, X.-M., and Krakow, J. S. (1985) J. Biol. Chem. 260, 4378-4383). CRP is relatively resistant to attack by the Staphylococcus aureus V8 protease, chymotrypsin, trypsin, and subtilisin whereas both mAb 64D1-CRP and cAMP-CRP are attacked by these proteases yielding N-terminal core fragments. The fragment patterns resulting from proteolysis of mAb 64D1-CRP and cAMP-CRP differ indicating that the CRP in each complex is in a different conformation. The data presented indicate that the preferred conformation of the antigenic site for mAb 64D1 is present in unliganded CRP. Binding of mAb 64D1 to CRP is inhibited at high cAMP concentration. Formation of a stable cAMP-CRP-lac P+-RNA polymerase open promoter complex resistant to dissociation by mAb 64D1 occurs at a much lower cAMP concentration. The observed increase in resistance to mAb 64D1 may reflect a possible conformational change in CRP effected by contact with RNA polymerase in the open promoter complex.  相似文献   

5.
H Aiba  A Hanamura  T Tobe 《Gene》1989,85(1):91-97
  相似文献   

6.
7.
8.
9.
How cyclic AMP and its receptor protein act in Escherichia coli   总被引:24,自引:0,他引:24  
S Adhya  S Garges 《Cell》1982,29(2):287-289
  相似文献   

10.
11.
12.
The three-dimensional model of the Escherichia coli cyclic AMP (cAMP) receptor protein (CRP) shows that several amino acids are involved as chemical contacts for binding cAMP. We have constructed and characterized mutants at four of these positions, E72, R82, S83, and R123. The mutations were made in wild-type crp as well as a cAMP-independent crp, crp*. The activities of the mutant proteins were characterized in vivo for their ability to activate the lac operon. These results provide genetic evidence to support that E72 and R82 are essential and S83 and R123 are important in the activation of CRP by cAMP.  相似文献   

13.
14.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.  相似文献   

15.
Nine hybridoma clones producing antibodies against the Escherichia coli cAMP receptor protein (CRP) have been isolated. Five of the monoclonal antibodies (Class I) had a much higher affinity for native CRP while the remaining four (Class II) bound equally well to native or denatured CRP. Using native N-terminal CRP cores, it was shown that none of the Class I monoclonal antibodies cross-reacted with the 15,000-Da CRP core, and only two bound to the 18,800-Da CRP core. The positions of the antigenic determinants for the Class II monoclonal antibodies were found by Western blotting analysis to reside in the N-proximal region of CRP. Only one monoclonal antibody strongly inhibited cAMP binding by CRP, and this was accompanied by a consequent strong inhibition of both lac DNA binding and abortive initiation by RNA polymerase. Each of the Class I monoclonal antibodies inhibited abortive initiation, and four of these antibodies also blocked the binding of cAMP X CRP to the lac DNA fragment. One Class I and one Class II monoclonal antibody bound to the cAMP X CRP X DNA complex. Two of the Class II monoclonal antibodies were without apparent effect on any of the assays used.  相似文献   

16.
17.
By labeling adenosine 3′, 5′-cyclic monophosphate (cyclic AMP) with [32P] phosphate and chromatographing it on a thin-layer alumina plate, we have determined the extra- and intracellular amounts of cyclic AMP in an Escherichia coli CRP? mutant (deficient in a cyclic AMP receptor protein) and its isogenic CRP+ cell. The CRP? cell was found to excrete cyclic AMP at an abnormally high rate as compared to the CRP+ cell when growing on glucose or glycerol, which can be correlated with the abnormally high intracellular levels of cyclic AMP in the CRP? cell.  相似文献   

18.
In the absence of cAMP the cyclic AMP receptor protein (CRP) is relatively resistant to trypsin whereas the cAMP X CRP complex is attacked yielding N-terminal core fragments of 14,300 and 18,500 Da which still bind cAMP. The DNA X CRP complex formed at low ionic strength in the absence of cAMP is cleaved by trypsin with the formation of 9,700- and 6,000-Da fragments and the concomitant loss of cAMP binding activity. DNA X CRP remains as resistant to attack by subtilisin, clostripain, and the Staphylococcus aureus V8 protease as unliganded CRP but is slowly digested by chymotrypsin. All of the double-stranded polydeoxyribonucleotides and several of the single-stranded polydeoxyribonucleotides and polyribonucleotides tested render CRP sensitive to cleavage by trypsin. CRP is less rapidly cleaved by trypsin in the presence of d(A)n, d(I)n, and r(C)n indicative of a weaker affinity of CRP for these polynucleotides. The 9,700-Da fragment is N-terminal in CRP and probably terminates at Lys-89. The loss of cAMP binding activity following trypsin cleavage of DNA X CRP indicates that regions beyond this residue are important in the function of the cAMP-binding domain of CRP. The 6,000-Da fragment extends from Val-131 to Arg-185 or Lys-188 and contains part of the F helix involved in DNA binding by CRP.  相似文献   

19.
20.
Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号