首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Little is known about factors that affect the composition of contracted blood clots in specific diseases. We investigated the content of polyhedral erythrocytes (polyhedrocytes) formed in blood clots and its determinants in type 2 diabetes (T2D) patients.

Methods

In 97 patients with long-standing T2D [median HbA1c, 6.4% (interquartile range 5.9–7.8)], we measured in vitro the composition of blood clots, including a clot area covered by polyhedrocytes using scanning electron microscopy and the erythrocyte compression index (ECI), defined as a ratio of the mean polyhedrocyte area to the mean native erythrocyte area. Moreover, plasma fibrin clot permeability (Ks), clot lysis time (CLT), thrombin generation, oxidative stress [total protein carbonyl (total PC), total antioxidant capacity and thiobarbituric acid reactive substances (TBARS)], and platelet activation markers were determined. The impact of glucose concentration on polyhedrocytes formation was assessed in vitro.

Results

Polyhedrocytes content in contracted clots was positively correlated with glucose (r?=?0.24, p?=?0.028), glycated hemoglobin (r?=?0.40, p?=?0.024), total cholesterol (r?=?0.22, p?=?0.044), TBARS (r?=?0.60, p?=?0.0027), P-selectin (r?=?0.54, p?=?0.0078) and platelet factor-4, PF4 (r?=?0.59, p?=?0.0032), but not with thrombin generation, platelet count, Ks or CLT. Patients who formed more polyhedrocytes (≥?10th percentile) (n?=?83, 85.6%) had higher glucose (+?15.7%, p?=?0.018), fibrinogen (+?16.6%, p?=?0.004), lower red blood cell distribution width (RDW, ??8.8%, p?=?0.034), reduced plasma clot density (??21.8% Ks, p?=?0.011) and impaired fibrinolysis (+?6.5% CLT, p?=?0.037) when compared to patients with lesser amount of polyhedrocytes (<?10th percentile). ECI and the content of polyhedrocytes were strongly associated with total PC (r?=?0.79, p?=?0.036 and r?=?0.67, p?=?0.0004, respectively). In vitro an increase of glucose concentration by 10 mmol/L was associated with 94% higher polyhedrocytes content (p?=?0.033) when compared to the baseline (7.1 mM). After adjustment for age, sex and fibrinogen, multiple regression analysis showed that RDW was the only independent predictor of polyhedrocytes content in T2D (OR?=?0.61, 95% CI 0.39–0.92).

Conclusions

Poor glycemic control, together with enhanced platelet activation and oxidative stress, increase the content of polyhedrocytes in blood clots generated in T2D patients.
  相似文献   

2.
3.

Background

We have previously shown that many chronic, inflammatory diseases are accompanied, and possibly partly caused or exacerbated, by various coagulopathies, manifested as anomalous clots in the form of ‘dense matted deposits’. More recently, we have shown that these clots can be amyloid in nature, and that the plasma of healthy controls can be induced to form such clots by the addition of tiny amounts of bacterial lipopolysaccharide or lipoteichoic acid. Type 2 diabetes (T2D) is also accompanied by raised levels of LPS.

Methods

We use superresolution and confocal microscopies to investigate the amyloid nature of clots from healthy and T2D individuals.

Results

We show here, with the established stain thioflavin T and the novel stains Amytracker? 480 and 680, that the clotting of plasma from type 2 diabetics is also amyloid in nature, and that this may be prevented by the addition of suitable concentrations of LPS-binding protein.

Conclusion

This implies strongly that there is indeed a microbial component to the development of type 2 diabetes, and suggests that LBP might be used as treatment for it and its sequelae.
  相似文献   

4.

Background

Human adipose-derived stem cells (hADSCs) are capable of differentiating into many cells such as cardiac cells. Different types of inducers are used for cardiac cell differentiation, but this question still remains to be investigated, which one is the best. The aim of this paper was to investigate the effect of combination of fibrin scaffold and trichostatin A (TSA), for differentiation of hADSCs into cardiomyocyte-like cells.

Methods

After approval of characteristics of hADSCs and fibrin scaffold, hADSCs were cultured in fibrin scaffold with 10 µM TSA for 72 h and kept in standard conditions for 4 weeks. QRT-PCR and immunostaining assay were performed for evaluating the expression pattern of special cardiac genes and proteins.

Results

In particular, our study showed that fibrin scaffold alongside TSA enhanced expression of the selected genes and proteins.

Conclusions

We concluded that the TSA alone or with fibrin scaffold can lead to the generation of cardiac like cells in a short period of time.
  相似文献   

5.

Background

Ingestion of the poisonous weed ragwort (Senecio jacobea) by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods.

Results

One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin.

Conclusion

These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock.
  相似文献   

6.

Background

Outer membrane vesicles (OMVs) of Acinetobacter baumannii are cytotoxic and elicit a potent innate immune response. OMVs were first identified in A. baumannii DU202, an extensively drug-resistant clinical strain. Herein, we investigated protein components of A. baumannii DU202 OMVs following antibiotic treatment by proteogenomic analysis.

Methods

Purified OMVs from A. baumannii DU202 grown in different antibiotic culture conditions were screened for pathogenic and immunogenic effects, and subjected to quantitative proteomic analysis by one-dimensional electrophoresis and liquid chromatography combined with tandem mass spectrometry (1DE-LC-MS/MS). Protein components modulated by imipenem were identified and discussed.

Results

OMV secretion was increased >?twofold following imipenem treatment, and cytotoxicity toward A549 human lung carcinoma cells was elevated. A total of 277 proteins were identified as components of OMVs by imipenem treatment, among which β-lactamase OXA-23, various proteases, outer membrane proteins, β-barrel assembly machine proteins, peptidyl-prolyl cis–trans isomerases and inherent prophage head subunit proteins were significantly upregulated.

Conclusion

In vitro stress such as antibiotic treatment can modulate proteome components in A. baumannii OMVs and thereby influence pathogenicity.
  相似文献   

7.

Purpose of review

Black yeast-like fungi are capable of causing a wide range of infections, including invasive disease. The diagnosis of infections caused by these species can be problematic. We review the changes in the nomenclature and taxonomy of these fungi, and methods used for detection and species identification that aid in diagnosis.

Recent findings

Molecular assays, including DNA barcode analysis and rolling circle amplification, have improved our ability to correctly identify these species. A proteomic approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has also shown promising results. While progress has been made with molecular techniques using direct specimens, data are currently limited.

Summary

Molecular and proteomic assays have improved the identification of black yeast-like fungi. However, improved molecular and proteomic databases and better assays for the detection and identification in direct specimens are needed to improve the diagnosis of disease caused by black yeast-like fungi.
  相似文献   

8.

Background

The practice of dehorning yak raises animal safety concerns, which have been addressed by selective breeding to obtain genetically hornless yak. The POLLED locus in yak has been studied extensively; however, little is known regarding the proteins that regulate horn bud development.

Methods

A differential proteomic analysis was performed to compare the skin from the horn bud region of polled yak fetuses and the horn bud tissue of horned yak fetuses using isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with 2D LC-MS/MS.

Results

One hundred differentially abundant proteins (DAPs) were identified. Of these, 29 were up-regulated and 71 were down-regulated in skin from the horn bud region of polled fetuses when compared to the horn bud tissue of horned fetuses. Bioinformatics analyses showed that the up-regulated DAPs were mainly associated with metabolic activities, while the down-regulated DAPs were significantly enriched in cell adhesion and cell movement activities.

Conclusions

We concluded that some important proteins were associated with cell adhesion, cell motility, keratinocyte differentiation, cytoskeleton organization, osteoblast differentiation, and fatty acid metabolism during horn bud development. These results advance our understanding of the molecular mechanisms underlying horn development.
  相似文献   

9.

Background

Normal human EDTA plasma samples were collected on ice, processed ice cold, and stored in a freezer at – 80 °C prior to experiments. Plasma test samples from the – 80 °C freezer were thawed on ice or intentionally warmed to room temperature.

Methods

Protein content was measured by CBBR binding and the release of alcohol soluble amines by the Cd ninhydrin assay. Plasma peptides released over time were collected over C18 for random and independent sampling by liquid chromatography micro electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) and correlated with X!TANDEM.

Results

Fully tryptic peptides by X!TANDEM returned a similar set of proteins, but was more computationally efficient, than “no enzyme” correlations. Plasma samples maintained on ice, or ice with a cocktail of protease inhibitors, showed lower background amounts of plasma peptides compared to samples incubated at room temperature. Regression analysis indicated that warming plasma to room temperature, versus ice cold, resulted in a ~ twofold increase in the frequency of peptide identification over hours–days of incubation at room temperature. The type I error rate of the protein identification from the X!TANDEM algorithm combined was estimated to be low compared to a null model of computer generated random MS/MS spectra.

Conclusion

The peptides of human plasma were identified and quantified with low error rates by random and independent sampling that revealed 1000s of peptides from hundreds of human plasma proteins from endogenous tryptic peptides.
  相似文献   

10.

Introduction

Quantification of tetrahydrofolates (THFs), important metabolites in the Wood–Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen.

Objective

To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors.

Methods

Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC–MS/MS was used for quantification.

Results

Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP.

Conclusion

Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.
  相似文献   

11.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

12.

Background

Acrolein (allyl Aldehyde) as one of smoke irritant exacerbates chronic airway diseases and increased in sputum of patients with asthma and chronic obstructive lung disease. But underlying mechanism remains unresolved. The aim of study was to identify protein expression in human lung microvascular endothelial cells (HMVEC-L) exposed to acrolein.

Methods

A proteomic approach was used to determine the different expression of proteins at 8 h and 24 h after treatment of acrolein 30 nM and 300 nM to HMVEC-L. Treatment of HMVEC-L with acrolein 30 nM and 300 nM altered 21 protein spots on the two-dimensional gel, and these were then analyzed by MALDI-TOF MS.

Results

These proteins included antioxidant, signal transduction, cytoskeleton, protein transduction, catalytic reduction. The proteins were classified into four groups according to the time course of their expression patterns such as continually increasing, transient increasing, transient decreasing, and continually decreasing. For validation immunohistochemical staining and Western blotting was performed on lung tissues from acrolein exposed mice. Moesin was expressed in endothelium, epithelium, and inflammatory cells and increased in lung tissues of acrolein exposed mice compared with sham treated mice.

Conclusions

These results indicate that some of proteins may be an important role for airway disease exacerbation caused by acrolein exposure.
  相似文献   

13.

Background

Atherosclerotic lesions are comprised of distinct regions with different proteomic profiles. Men and women develop differences in lesion phenotype, with lesions from women generally being more stable and less prone to rupture. We aimed to investigate the differences in proteomic profiles between sexes, including distinct lesion regions, to identify altered proteins that contribute to these differences observed clinically.

Methods

Carotid endarterectomy samples (ten men/ten women) were obtained, and intraplaque biopsies from three distinct regions (internal control, fatty streak and plaque) were analysed by tandem-mass spectrometry. Multivariate statistical modelling, using orthogonal partial least square-discriminant analysis, was used to discriminate the proteomes between men and women.

Results

Multivariate discriminant modelling revealed proteins from 16 functional groups that displayed sex-specific associations. Additional statistics revealed ten proteins that display region-specific alterations when comparing sexes, including proteins related to inflammatory response, response to reactive oxygen species, complement activation, transport and blood coagulation. Transport protein afamin and blood coagulation proteins antithrombin-III and coagulation factor XII were significantly increased in plaque region from women. Inflammatory response proteins lysozyme C and phospholipase A2 membrane-associated were significantly increased in plaque region from men. Limitations with this study are the small sample size, limited patient information and lack of complementary histology to control for cell type differences between sexes.

Conclusions

This pilot study, for the first time, utilises a multivariate proteomic approach to investigate sexual dimorphism in human atherosclerotic tissue, and provides an essential proteomic platform for further investigations to help understand sexual dimorphism and plaque vulnerability in atherosclerosis.
  相似文献   

14.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

15.

Background

Mesenchymal stem/stromal cells (MSC) display a range of immunoregulatory properties which can be enhanced by the exposure to cytokines such interferon γ (IFN-γ). However the compositional changes associated with the ‘licensing’ of these cells have not been clearly defined. The present study was undertaken to provide a detailed comparative proteomic analysis of the compositional changes that occur in human bone marrow derived MSC following 20 h treatment with IFN-γ.

Methods

2D LC MSMS analysis of control and IFN-γ treated cells from 5 different healthy donors provided confident identification of more than 8400 proteins.

Results

In total 210 proteins were shown to be significantly altered in their expression levels (≥|2SD|) following IFN-γ treatment. The changes for several of these proteins were confirmed by flow cytometry. STRING analysis determined that approximately 30% of the altered proteins physically interacted in described interferon mediated processes. Comparison of the list of proteins that were identified as changed in the proteomic analysis with data for the same proteins in the Interferome DB indicated that ~35% of these proteins have not been reported to be IFN-γ responsive in a range of cell types.

Conclusions

This data provides an in depth analysis of the proteome of basal and IFN-γ treated human mesenchymal stem cells and it identifies a number of novel proteins that may contribute to the immunoregulatory capacity if IFN-γ licensed cells.
  相似文献   

16.

Introduction

Tandem mass spectrometry (MS/MS) has been widely used for identifying metabolites in many areas. However, computationally identifying metabolites from MS/MS data is challenging due to the unknown of fragmentation rules, which determine the precedence of chemical bond dissociation. Although this problem has been tackled by different ways, the lack of computational tools to flexibly represent adjacent structures of chemical bonds is still a long-term bottleneck for studying fragmentation rules.

Objectives

This study aimed to develop computational methods for investigating fragmentation rules by analyzing annotated MS/MS data.

Methods

We implemented a computational platform, MIDAS-G, for investigating fragmentation rules. MIDAS-G processes a metabolite as a simple graph and uses graph grammars to recognize specific chemical bonds and their adjacent structures. We can apply MIDAS-G to investigate fragmentation rules by adjusting bond weights in the scoring model of the metabolite identification tool and comparing metabolite identification performances.

Results

We used MIDAS-G to investigate four bond types on real annotated MS/MS data in experiments. The experimental results matched data collected from wet labs and literature. The effectiveness of MIDAS-G was confirmed.

Conclusion

We developed a computational platform for investigating fragmentation rules of tandem mass spectrometry. This platform is freely available for download.
  相似文献   

17.

Background

Left atrial appendage (LAA) closure (LAAC) by implantation of an occlusion device is an established cardiac intervention to reduce risk of stroke while avoiding intake of oral anticoagulation medication during atrial fibrillation. Cardiac interventions can alter local or systemic gene and protein expression. Effects of LAAC on systemic metabolism have not been studied yet.

Objectives

We aimed to study the effects of interventional LAAC on systemic metabolism.

Methods

Products of glycolysis, tricarboxylic acid and urea metabolism were analyzed by ESI-LC-MS/MS and MS/MS using the AbsoluteIDQ? p180 Kit in plasma of 44 patients undergoing successful interventional LAAC at baseline (T0) and after 6 months (T1).

Results

During follow up, plasma concentrations of several parameters of glycolysis and tricarboxylic acid cycle (TCA) and urea metabolism increased (alanine, hexose, proline, sarcosine), while others decreased (aspartate, glycine, SDMA, serine). Multivariate linear regression analysis showed that time after interventional LAAC was an independent predictor for metabolite changes, including the decrease of SDMA (beta ?0.19, p?<?0.01) and the increase of sarcosine (beta 0.16, p?<?0.01).

Conclusions

Successful interventional LAAC affects different pathways of the metabolome, which are probably related to cardiac remodeling. The underlying mechanisms as well as the long term effects have to be studied in the future.
  相似文献   

18.

Background

Liver models that closely mimic the in vivo microenvironment are useful for understanding liver functions, capabilities, and intercellular communication processes. Three-dimensional (3D) liver models assembled using hepatocytes and liver sinusoidal endothelial cells (LSECs) separated by a polyelectrolyte multilayer (PEM) provide a functional system while also permitting isolation of individual cell types for proteomic analyses.

Methods

To better understand the mechanisms and processes that underlie liver model function, hepatocytes were maintained as monolayers and 3D PEM-based formats in the presence or absence of primary LSECs. The resulting hepatocyte proteomes, the proteins in the PEM, and extracellular levels of urea, albumin and glucose after three days of culture were compared.

Results

All systems were ketogenic and found to release glucose. The presence of the PEM led to increases in proteins associated with both mitochondrial and peroxisomal-based β-oxidation. The PEMs also limited production of structural and migratory proteins associated with dedifferentiation. The presence of LSECs increased levels of Phase I and Phase II biotransformation enzymes as well as several proteins associated with the endoplasmic reticulum and extracellular matrix remodeling. The proteomic analysis of the PEMs indicated that there was no significant change after three days of culture. These results are discussed in relation to liver model function.

Conclusions

Heterotypic cell-cell and cell-ECM interactions exert different effects on hepatocyte functions and phenotypes.
  相似文献   

19.

Background

A strong correlation exists between type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD), with CVD and the presence of atherosclerosis being the prevailing cause of morbidity and mortality in diabetic populations. T2DM is accompanied by various coagulopathies, including anomalous clot formation or amyloid fibrin(ogen), the presence of dysregulated inflammatory molecules. Platelets are intimately involved in thrombus formation and particularly vulnerable to inflammatory cytokines.

Methods

The aim of this current study was therefore to assess whole blood (hyper)coagulability, platelet ultrastructure and receptor expression, as well as the levels of IL-1β, IL-6, IL-8 and sP-selectin in healthy and diabetic individuals. Platelet morphology was assessed through scanning electron microscopy (SEM), while assessment of GPIIb/IIIa receptor expression was performed with confocal microscopy and flow cytometry with the addition of FITC-PAC-1 and CD41-PE antibodies. IL-1β, IL-6 and IL-8 and sP-selectin levels were assessed using a multiplex assay.

Results

In T2DM there is significant upregulation of circulating inflammatory markers, hypercoagulation and platelet activation, with increased GPIIb/IIIa receptor expression, as seen with flow cytometry and confocal microscopy. Analyses showed that these receptors were additionally shed onto microparticles, which was confirmed with SEM.

Conclusions

Cumulatively, this provides mechanistic evidence that pathological states of platelets together with amyloid fibrin(ogen) in T2DM, might underpin an increased risk for cardiovascular events.
  相似文献   

20.
Zhang F  Chen JY 《BMC genomics》2010,11(Z2):S12

Background

Breast cancer is worldwide the second most common type of cancer after lung cancer. Plasma proteome profiling may have a higher chance to identify protein changes between plasma samples such as normal and breast cancer tissues. Breast cancer cell lines have long been used by researches as model system for identifying protein biomarkers. A comparison of the set of proteins which change in plasma with previously published findings from proteomic analysis of human breast cancer cell lines may identify with a higher confidence a subset of candidate protein biomarker.

Results

In this study, we analyzed a liquid chromatography (LC) coupled tandem mass spectrometry (MS/MS) proteomics dataset from plasma samples of 40 healthy women and 40 women diagnosed with breast cancer. Using a two-sample t-statistics and permutation procedure, we identified 254 statistically significant, differentially expressed proteins, among which 208 are over-expressed and 46 are under-expressed in breast cancer plasma. We validated this result against previously published proteomic results of human breast cancer cell lines and signaling pathways to derive 25 candidate protein biomarkers in a panel. Using the pathway analysis, we observed that the 25 “activated” plasma proteins were present in several cancer pathways, including ‘Complement and coagulation cascades’, ‘Regulation of actin cytoskeleton’, and ‘Focal adhesion’, and match well with previously reported studies. Additional gene ontology analysis of the 25 proteins also showed that cellular metabolic process and response to external stimulus (especially proteolysis and acute inflammatory response) were enriched functional annotations of the proteins identified in the breast cancer plasma samples. By cross-validation using two additional proteomics studies, we obtained 86% and 83% similarities in pathway-protein matrix between the first study and the two testing studies, which is much better than the similarity we measured with proteins.

Conclusions

We presented a ‘systems biology’ method to identify, characterize, analyze and validate panel biomarkers in breast cancer proteomics data, which includes 1) t statistics and permutation process, 2) network, pathway and function annotation analysis, and 3) cross-validation of multiple studies. Our results showed that the systems biology approach is essential to the understanding molecular mechanisms of panel protein biomarkers.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号