首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Finnish Landrace x Southdown ewes were ovariectomized (OVX) and subjected to daily photoperiods of 16L:8D (Group I) or 8L:16D (Group II) for 84 days. Ewes were then either adrenalectomized (ADX) (N = 5 for Group I; N = 4 for Group II) or sham ADX (N = 6 for Groups I + II). After surgery, ewes in Group I were subjected to 8L:16D for 91 days and 16L:8D for 91 days whereas ewes in Group II were exposed to 16L:8D for 91 days and 8L:16D for 91 days. Oestradiol implants were inserted into all ewes on Day 148. Sequential blood samples were taken at 28, 56, 91, 119, 147 and 168 days after surgery to determine secretory profiles of LH and prolactin. Photoperiod did not influence LH release in Group I in the absence of oestradiol. Although photoperiod influenced frequency and amplitude of LH pulses in Group II before oestradiol treatment, adrenalectomy did not prevent these changes in patterns of LH release. However, in Group II the increase in LH pulse amplitude during exposure to long days was greater (P less than 0.01) in adrenalectomized ewes than in sham-operated ewes. Mean concentrations of LH increased in ADX ewes on Days 91 (P = 0.07) and 119 (P less than 0.05). Adrenalectomy failed to influence photoperiod-induced changes in mean concentrations of LH, amplitude of LH pulses and frequency of LH pulses in the presence of oestradiol. Concentrations of prolactin were influenced by photoperiod. In Groups I and II concentrations of prolactin increased (P less than 0.01) after adrenalectomy, but the magnitude of this effect decreased over time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Adult rams were exposed to photoperiod treatments over 2 years to study the influence of light regimes on pituitary-testicular activity and semen quality. Initially, all rams (12 per group) were exposed to 3 months of long days (16L:8D). Group 1 was then exposed to a regime of continuous short days (8L:16D) and Groups 2, 3, and 4 were exposed to 4 months of short days alternated with 1, 2, or 4 months, respectively, of long days. Every 2 weeks, serum hormone levels and scrotal circumference were determined and semen quality was evaluated. Regular cycles in pituitary and testicular activities corresponding to the period of the lighting regime resulted in Groups 2, 3, and 4, but not in Group 1. In general, the change from long days to short days induced increases in follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels, scrotal size and sperm numbers and a decrease in prolactin. The reverse occurred after subsequent exposure to long days. After 4 months of long days, testicular regression was complete, but when long-day exposure was reduced, less regression occurred. With continuous exposure to short days, FSH and testosterone remained above basal levels, prolactin levels were depressed, scrotal size remained near the maximum, and elevated numbers of motile sperm were sustained.  相似文献   

3.
Onset of sexual maturation was determined in weanling male collared lemmings exposed to one of three experimental regimens of different photoperiods before and after weaning. Animals gestated in photoperiods of either 16 h light:8 h dark or 8 h light:16 h dark. Those from 16 h light:8 h dark were transferred at 19 days of age to either 20 h light:4 h dark or 8 h light:16 h dark; those gestated under 8 h light: 16 h dark remained in that photoperiod throughout the experiment. After exposure for 15, 20, 25 or 30 days to the postweaning photoperiod, animals were killed and the following parameters assessed: body weight, testes weight, seminal vesicle weight, the presence or absence of epididymal spermatozoa and serum concentrations of prolactin, testosterone and corticosterone. All parameters except serum testosterone were significantly influenced by photoperiod. Animals housed under 8 h light:16 h dark had significantly greater body weights than those housed under 20 h light:4 h dark, a response that differs from that reported for other arvicoline rodents. The group gestated on 16 h light:8 h dark and transferred on day 19 to 8 h light:16 h dark had lower testes and seminal vesicle weights than the other two groups, and mature spermatozoa in the epididymides appeared 5 days later than in the 20 h light:4 h dark group. Serum prolactin was largely undetectable in animals from both 8 h light:16 h dark groups, but all males housed in 20 h light:4 h dark had 2.0-15.0 ng prolactin ml-1. Concentration of serum corticosterone was higher in animals weaned into long photoperiod, and decreased with age. These data indicate that weanling male D. groenlandicus are reproductively photoresponsive, but use a decrease in photoperiod, not static short-photoperiod exposure, to alter the rate of development. Prolactin was largely undetectable in animals exposed to short photoperiod, indicating that high concentrations of this hormone are not important for maturation. Low prolactin concentrations in animals in short photoperiods may mediate the annual moult to white pelage. The short-photoperiod-mediated decrease in corticosterone may play a role in seasonal changes in body weight and composition.  相似文献   

4.
Predictions for the phase angle differences (ψ) between the activity rhythm and the zeitgeber for different skeleton photoperiods based on the phase response curve (PRC) and the free-running period (τ) of the field mouse Mus booduga were made. These predictions were based on two assumptions: (i) The PRC for light pulses of 1 h duration and ca 45 lx intensity should resemble the PRC for pulses of 15 min duration and 1000 lx intensity. (ii) One of the two light pulses (LP) constituting the skeleton photoperiod should always impinge upon that zone of the PRC which has a slope of < ?2. Experiments were performed to compare ψ under skeleton and complete photoperiods and also to test the assumptions made in predicting ψ. The results show that the basic oscillation underlying the activity rhythm of the field mouse Mus booduga undergoes a “phase-jump” when two brief light pulses (of 1 h duration) were used to mimic a photoperiod of 20 h. The ψ values obtained for skeleton photoperiods closely match the predicted values. Under complete photoperiods, the experimentally obtained values match the predictions only up to 16 h. We conclude therefore that beyond this photoperiod, two discrete light pulses may not be sufficient to simulate the effect of a complete photoperiod.  相似文献   

5.
Annual variations in concentrations of luteinizing hormone (LH) and testosterone in plasma were analysed in relation to the antler cycle in six adult male roe deer exposed to a natural photoperiod (latitude 46 degrees 10'N) and in four adult males maintained in a constant short-day photoperiod (8 h light: 16 h dark) for a year, from the winter solstice at which time both groups of animals had antlers in velvet. The animals were sampled, every 15 min for 2 or 4 h at intervals of one month for a year. Under both natural and experimental conditions, LH concentrations were high from January to March, but in the experimental conditions they decreased between April and May-June, whereas in the natural conditions they increased. Plasma LH concentration was lowest between July and November in animals under natural photoperiod, whereas under 8 h light:16 h dark photoperiod a second increase in plasma LH occurred between August and September. Between March and August, concentrations of plasma testosterone increased under natural photoperiod, whereas under experimental photoperiod there was a biphasic pattern of plasma testosterone with peaks between February and May and between September and November. Under natural photoperiod, antlers were cast in November, 369 +/- 6 days after the previous antlers were cast. Under experimental photoperiod, antlers were cast after 193 +/- 10 days, and a new set developed. The sexual cycle of the male appears to be initiated by an endogenous rhythm in winter and is then maintained by hormonal changes resulting from increasing photoperiod in spring.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Angus and Angus crossbred prepubertal heifers were ovariectomized and randomly assigned to either increasing light simulating the photoperiod of the vernal equinox to the summer solstice (I) or decreasing light simulating the photoperiod of the autumnal equinox to the winter solstice (D) for 43 degrees N latitude. Three blood samples were taken each week for 14 weeks, the first at 11:00 h and two others 2 days later, 1 h before lights on (dark), 1 h before lights off (light). At the end of 14 weeks 4 heifers from each treatment group were cannulated and samples were taken for 12 h at 15-min intervals, 6 h in the light and 6 h in the dark. All sera were assayed for LH, FSH and prolactin. In addition, the samples taken at 15-min intervals were assayed for melatonin. In samples taken weekly at 11:00 h circulating concentrations of LH and prolactin were higher among animals in Group I, while FSH concentrations were not different between Groups D and I. In samples collected weekly in the light or the dark, LH and prolactin concentrations were higher in Group I animals. However, prolactin concentrations were higher and LH concentrations tended to be higher in samples taken in the dark. FSH concentrations were not different between either D or I or dark and light. In samples taken at 15-min intervals the prolactin baseline was higher and pulse amplitude tended to be higher for Group I animals. Neither LH nor FSH pulse characteristics differed between I and D; however, LH baseline and LH pulse amplitude were higher in the dark. Melatonin pulse amplitude was higher among animals in Group D and higher in serum collected in the dark. These results suggest that photoperiod alters circulating concentrations of LH and prolactin and alters pulsatile release of LH, prolactin and melatonin in the prepubertal heifer.  相似文献   

7.
It has been suggested that changes in endogenous glutamatergic stimulation of secretion of luteinizing hormone (LH) induced by photoperiod play a role in regulating seasonal cycles of reproductive activity. The aim of this study was to test the hypothesis that the glutamatergic control of the secretion of LH in the male Syrian hamster is sensitive to photoperiod, by determining whether the glutamate agonist N-methyl-D-aspartate (NMDA) could stimulate LH secretion in this species and, if so, to determine whether the response varied among animals exposed to different daylengths. In the first experiment, adult male hamsters were housed in either short day (8 h light: 16 h dark) for 6 weeks to induce testicular regression, or long days (16 h light: 8 h dark) to maintain testicular function, and the effects of systemic administration of NMDA on serum LH concentrations were determined. In the short-day hamsters, all s.c. doses of NMDA (25-75 mg kg-1 body weight) produced a robust rise in serum LH concentrations within 15 min. In the long-day hamsters, basal LH concentrations were higher than in short-day hamsters, but only the highest dose of NMDA produced a significant increase in LH concentrations, and the magnitude of this increment was less than those observed in short days. In hamsters in long days, the low doses of NMDA that did not significantly alter LH concentrations nevertheless significantly suppressed serum prolactin concentrations, demonstrating the efficacy of the drug. In hamsters in short days, serum prolactin concentrations were at the limit of detection of the assay, so no inhibitory effect of NMDA on prolactin secretion could be determined on this photoperiod. In the second experiment, the effects of a fixed dose of NMDA (50 mg kg-1 body weight) was tested at intervals in hamsters exposed to short days for a prolonged period such that their testes initially regressed, but then became scotorefractory and testicular recrudescence occurred. After 6 and 12 weeks in short days, NMDA stimulated LH secretion. However, after 24 weeks in short days when testicular recrudescence was complete, the response to NMDA was lost. A third experiment determined whether the reduced response to NMDA in hamsters on long days relative to those in short days might result from higher concentrations of circulating testosterone. Hamsters in long days were castrated to remove the influence of gonadal feedback, and the response to NMDA tested 3 weeks later when endogenous LH concentrations had risen to levels characteristic of the chronically castrated condition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
One-year-old bay scallops, Argopecten irradians irradians (58 ± 2 mm, 22 ± 1 g live weight) were exposed to four replicated photoperiod treatments (24D, 8L:16D, 16L:8D, and 24L where D = dark hours, L = light hours) in order to measure the effect on gonad weight and maturation during the conditioning process. Results indicated that day-lengths of more than 8 h are necessary to promote gonad maturation in bay scallops. After 6 wk, the mean gonad weight for scallops in the 16-h and 24-h light regimes was similar at 0.6 ± 0.1 g dry weight compared to a mean of 0.2 ± 0.1 g dry weight for those in the 8-h and 0-h light regimes. Histological assessment indicated significantly more follicular tissue development in both the male and female portion of the gonad in the two longer photoperiod treatments. Overall, gamete maturity was highest for the scallops in the 16-h light regime; the incidence of mature eggs was 50% compared to 35% in the 24-h light regime, 20% in the 8-h light regime and 10% in the 0-h light regime. Assessment of feeding rates indicated no significant difference in algal cell consumption among treatments. Total dry tissue weight doubled over the 6-wk conditioning trial with no significant differences among treatments. One-year-old bay scallops appear to be non-responsive to conditions suitable for gonad maturation (i.e. appropriate temperature and food levels) unless they receive more than 8 h of light exposure. This finding has important implications for northern hatcheries which typically condition broodstock indoors during the early spring.  相似文献   

9.
Rates of growth and sexual maturation of microtine rodents vary in response to photoperiod. Previous work with Microtus montanus has shown that the photoperiod present prior to weaning influences how voles will respond to photoperiods seen following weaning. The data presented demonstrate that information about the photoperiod seen by the mother during pregnancy influences the postweaning development of male M. montanus. Adult M. montanus were paired in photoperiods consisting of 8, 14 or 16 h light/day. Their litters were conceived and born in these photoperiods. On the day of birth the litters were recorded and retained in the gestation photoperiod (Groups C8, C14 and C16) or transferred to the 14-h photoperiod (Groups E8 and E16). The growth of males was followed from weaning until 74 days of age, at which time the voles were sacrificed and their reproductive organs weighed. There were no differences in body weight or length between groups at 18 days of age. At 74 days of age the development of the voles could be ranked in the following sequence: C8 less than E16 less than C14 less than E8 less than C16.  相似文献   

10.
Entrainment may involve responses to dawn, to dusk, and to the light in between these transitions. Previous studies showed that the circadian system responds to only 2 light pulses, one at the beginning and one at the end of the day, in a similar way as to a full photoperiod, as long as the photoperiod is less than approximately 1/2 tau. The authors used a double 1-h light pulse protocol with different intervals of darkness in between (1, 2, 4, 7, 10, and 16 h) to study the phase responses of mice. The phase response curves obtained were compared to full light pulse PRCs of corresponding durations. Up to 6 hours, phase responses induced by double light pulses are virtually the same as by a corresponding full light pulse. The authors made a simple phase-only model to estimate the response reduction due to light exposure and response restoration due to dark exposure of the system. In this model, they assumed a 100% contribution of the first 1-h light pulse and fitted the reduction factor for the second light pulse to yield the best fit to the observations. The results suggest that after 1 h of light followed by less than 4 h of darkness, there is a considerable reduction in response to the second light pulse. Full response restoration requires more than 10 h of darkness. To investigate the influence of the duration of light on the response saturation, the authors performed a second series of experiments where the duration of the 2 light pulses was varied from 4 to 60 min each with a fixed duration of the stimulus (4 h). The response to 2 light pulses saturates when they are between 30 and 60 min long. In conclusion, double pulses replace single full light pulses of a corresponding duration of up to 6 h due to a response reduction during light, combined with response restoration during darkness. By the combined response reduction and response restoration, mice can maintain stable entrainment to the external LD cycle without being continuously exposed to it.  相似文献   

11.
Twenty-seven adult rams (9 Suffolk, 9 Texel and 9 Dorset Horn) were raised under natural photoperiod and were trained to serve into an artificial vagina. On 1 April they were abruptly exposed to 3 different photoperiods as follows: (i) 8 hours light and 16 hours darkness (8L : 16D); (ii) 16 hours light and 8 hours darkness (16L : 8D); (iii) natural photoperiod. All rams were kept at pasture daily between 09.30 h and 16.00 h except when required indoors for experimental work. Rams on artificial photoperiod had appropriate supplemental lighting in an environmental chamber. Semen collection was attempted from each ram on alternate weeks during the experiment which lasted for 6 months. Semen was evaluated for volume, density, motility and abnormalities. Testicular length and circumference were recorded at 2-week intervals and libido was recorded at 4-week intervals. Three blood samples were collected from each ram at 30-min intervals on a weekly basis and the plasma was stored at ?20°C until assayed for testosterone and prolactin.Photoperiod had no significant effect on semen volume, motility and percentage dead or abnormal cells. Breed of ram had a significant effect on semen motility (P < 0.05) with Dorset Horn rams producing semen with the highest motility. Volume and motility scores both increased as the breeding season approached (P < 0.05), while the percentage of abnormal cells decreased (P < 0.01). Breed or photoperiod did not significantly affect scrotal measurements although animals exposed to 8L : 16D had the highest measurements. Month affected testicular measurements which generally increased from April to September. Suffolk rams had higher testosterone concentrations, and this breed also completed the highest number of mounts within an allocated test time (P < 0.05). Dorset Horn rams reached a peak in testosterone concentrations in June/ July whereas Suffolks and Texels reached a similar peak in August. Prolactin concentrations decreased from a maximum at the start and rams on natural photoperiod tended to have highest levels. These results show that month can have a bigger influence on semen characteristics than imposed artificial photoperiods in rams which have been exposed to increasing natural daylength for some months.  相似文献   

12.
Age at puberty, fertility and litter size of ewe lambs of synthetic sire and dam strains raised under different photoregimens were determined. The lambs were bred during January, May or September at 30 to 32 weeks of age. Irrespective of birth date, the lambs were reared under continuous light from birth to 5 weeks of age. From 5 to 20 weeks of age, they were kept under 16 hours of light dairy (16L:8D; Treatment A), 8 hours of light daily (8L:16D; Treatment B), or a split photoperiod of 8 hours total light daily (7L:9D:1L:7D; Treatment C). Subsequently, all lambs were exposed to 9 hours of light daily until after breeding. Lambs were exposed to rams for two estrous periods after treatment with fluorogestone acetate-impregnated intravaginal sponges and pregnant mares' serum gonadotropin (PMSG) to induce synchronized estrus. Although the age at puberty (174 days) was similar among treatments, the incidence of puberty prior to progestagen sponge treatment was higher ( approximately 50%) for lambs reared under Treatments A and C than under Treatment B. Fertility and litter size of lambs were not influenced by the previous photoperiod history or by sexual maturity, i.e., puberal or prepuberal, at the start of the sponge treatment. However, strain, age and weight of lambs at breeding influenced significantly the reproductive outcome.  相似文献   

13.
It is known that day-active Nile grass rats, Arvicanthis niloticus, increase the amount of activity in the night relative to that in the day when provided with running wheels. This was confirmed in the present study. Animals without a wheel displayed 69.0% of their general activity in the L phase of a 12:12 h light-dark cycle; animals provided with wheels had only 48.6% of their wheel revolutions in the light. The contribution of direct (masking) responses to light to the increased nocturnality of animals with wheels was examined in two experiments. In experiment 1, masking was tested by exposing the animals to repeated cycles of 30 min of entraining light and 30 min of a different, usually dimmer light, during the L phase of a 12:12 h light-dark cycle. For animals with wheels, there was more running during the 30-min pulses of dim light or darkness than during the 30-min periods of entraining light. In contrast, for animals without wheels, there was more general activity during the 30-min periods of entraining light than during the 30-min pulses of dim light or darkness. In experiment 2, the animals were first exposed to a 12:12 h light-dark cycle and then put on a 1:10:1:12 h LDLD skeleton photoperiod. Animals with wheels increased their running during the subjective day of the skeleton photoperiod compared to that in the actual day of the 12:12 h light-dark cycle. Animals without wheels showed similar levels of general activity during the subjective day of the skeleton photoperiod and the actual day of the 12:12 h cycle. These experiments demonstrate that when Nile rats have running wheels, their increased nocturnal activity is associated with an increased suppression of locomotion in direct response to light. It is possible that changes in masking responses to light may be an essential and integral component of switching between diurnal and nocturnal activity profiles.  相似文献   

14.
In a total of 12 adult Colombian owl monkeys, Aotus lemurinus griseimembra, the significance of nonparametric light effects for the entrainment of the circadian system by light-dark (LD) cycles was studied by carrying out (a) phase-response experiments testing the phase-shifting effect of 30-min light pulses (LPs) of 250 lx applied at various phases of the free-running circadian activity rhythm (LL 0.2 lx) and (b) synchronization experiments testing the entraining effect of 24-h single LP photoperiods consisting of 30-min L of 80 lx and 23.5-h D of 0.5 lx (sP 0.5) and skeleton photoperiods consisting of two 30-min LPs of 80 lx, given against a background illuminance of 0.5 lx either symmetrically at 12-h intervals (PP 12:12) or asymmetrically at 9- and 15-h intervals (PP 9:15). The phase-response characteristics in Aotus, as evidenced by the phase-response curve, generally correspond to those of nocturnal rodents, proving that this neotropical simian primate chronobiologically is a genuine nocturnal species. When free-running with a spontaneous period close to 24 h (24.3 ± 0.1 h), the PP 12:12 produced entrainment in only two of five owl monkeys, whereas the sP 0.5 entrained four of them. The PP 9:15, however, brought about stable entrainment of the circadian rhythms of locomotor activity, feeding activity, and core temperature in all animals tested (n = 8). Changes in phase position of the activity time with the endogenous rhythm entrained by a PP 12:12, by an sP 0.5, or by a PP 9:15 give evidence that both LPs of a skeleton photoperiod contribute to the phase setting of the circadian system. When free-running with a considerably lengthened spontaneous period (τ ≥ 25.5 h), even the sP 0.5 and the PP 9:15 failed to entrain the owl monkeys' circadian rhythms, whereas a 24-h photoperiod with a very long LP of 3 h caused entrainment. The results indicate that in Aotus lemurinus griseimembra, in addition to the nonparametric light effects, parametric light effects play a significant role in the entrainment of circadian rhythms by LD cycles.  相似文献   

15.
The primary objective of this study was to determine the duration of exposure to a long-day or short-day photoperiod required to disrupt photorefractoriness to short-day and long-day photoperiods, respectively. In Experiment 1, 4 groups of Suffolk breed ewes--designated B1, B2, B3, and B4--were placed in photochambers one day before the winter solstice, exposed to a 16L:8D photoperiod for 0, 30, 60, or 90 days, and then exposed to a 10L:14D photoperiod until the time of the summer solstice. Blood samples taken by venipuncture thrice weekly were analyzed for progesterone concentrations. The interval between start of the study and cessation of estrous cycles did not differ significantly between groups (p greater than 0.05). All 6 ewes in Group B1 then remained in anestrus for the duration of the study. Four of the 6 ewes in Group B2, and all ewes in Groups B3 and B4 resumed cycles after exposure to the 10L:14D photoperiod. In Experiment 2, 4 groups of ewes--designated A1, A2, A3, and A4--were placed in photochambers one day before the summer solstice, exposed to a 10L:14D photoperiod for 0, 30, 60, and 90 days, respectively, and then exposed to a 16L:8D photoperiod. Ewes in Group A1 started estrous cycles at a time not significantly different from ewes kept outdoors. However, onset of cycles was significantly advanced (p less than 0.05) in ewes exposed to 10L:14D. After ewes were returned to the 16L:8D photoperiod, estrous cycles were suppressed in 5 of 6 ewes in Group A2 and in all ewes in Groups A3 and A4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Three experiments were done to determine if endogenous opioid peptides (EOPs) mediate the effects of photoperiod on release of luteinizing hormone (LH) and prolactin (Prl) in ovariectomized (OVX) ewes. Intravenous infusions of 0.5 naloxone X h-1 X kg body weight-1 for 3.5 h increased (P less than 0.01) mean plasma concentrations of LH and decreased (P less than 0.025) mean interpulse interval (period) of LH pulses in OVX ewes exposed to long day lengths (16L:8D). Infusions of either 1.0 or 2.5 mg morphine-SO4 X h-1 X kg-1 for 3 h increased (P less than 0.005) the period of LH pulses and increased (P less than 0.005) concentrations of Prl in OVX ewes during the breeding season. In OVX ewes exposed to long (16L:8D) or short (8L:16D) day lengths infusions of naloxone increased (P less than 0.05) mean concentrations of LH, whereas morphine decreased (P less than 0.01) mean concentrations of LH. These effects were attributed to changes in period of LH pulses (P less than 0.001). The drug X photoperiod interactions were not significant for LH parameters. Naloxone did not affect Prl release in either long- or short-day groups, but morphine increased (P less than 0.001) Prl release during long and short day lengths. The effect of morphine on Prl release was more pronounced in ewes exposed to long day lengths than in those exposed to short day lengths. In conclusion, EOPs inhibit the LH pulse generator in OVX ewes. However, it is doubtful that the EOPs mediate the steroid-independent effects of photoperiod on LH release. The results also suggest that photoperiod may influence Prl release via opiate neurons.  相似文献   

17.
Summary Removal of the pineal gland modifies the entrainment behavior of house sparrows. Abnormal entrainment occurs in pinealectomized sparrows exposed to skeleton photoperiods (light cycles composed of 2 pulses of light per 24-h cycle). This abnormal entrainment depends upon the state of the locomotor activity (rhythmic or arrhythmic) before exposure to the light cycle, and upon the interval between the 2 pulses of light which constitute the skeleton photoperiod. The conditions that produce abnormal entrainment in pinealectomized birds are strongly correlated with those that produce 2 stable phases of entrainment to skeleton photoperiods in normal birds (bistability phenomenon). These results suggest that after pinealectomy, there remains a population of oscillators whose combined output is reflected in the locomotor activity of individual sparrows.Abbreviations LD 12 12 light-dark cycle with 12 h of light and 12 h of dark per 24-h cycle - CT circadian time  相似文献   

18.
Ontogeny of the circadian variation of plasma prolactin in sheep   总被引:1,自引:0,他引:1  
The ontogeny of circadian rhythms is unknown. The newborn sheep has a circadian rhythm of temperature; to study the ontogeny of other rhythms, we examined the 24-h variation of plasma prolactin concentration in fetal and newborn sheep. To this effect, we measured plasma prolactin concentration in chronically catheterized fetuses (n = 7) and in newborn lambs raised under short day nycthemeral (12 light:12 dark, n = 13) or constant light conditions (n = 5). Indwelling catheters were implanted into the jugular vein and carotid artery of late gestation fetuses (0.9 gestation) and newborns (5-29 days old). Experiments were performed 4 or more days after surgery. Lambs were kept in a canvas sling and were fed cow's milk either by mouth or through a nasogastric catheter at established time intervals. Haematocrit, pH, and blood gases were measured before and after the experiments in all cases and remained within normal values. Lights were on and room temperature was maintained constant during the whole experiment. Samples were obtained every 1-2 h for 24 h in fetuses and newborn lambs under nycthemeral conditions and every hour for 48 h in newborn lambs kept under constant light. Plasma prolactin was measured by radioimmunoassay. The presence of a 24 h rhythm was determined by Cosinor analysis. Fetuses, aged 129 +/- 6 days (SD) n = 7, showed a variation in plasma prolactin concentration with a period of 24 h that fits the equation: plasma prolactin (ng ml-1) = 97.0 + 15.4 cos 15 (t-23.0), P = 0.035.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Reproductive responses to photoperiod were directly compared in mature ewes and in their spring-born twin female lambs. All females were ovariectomized and treated with oestradiol implants before transfer into artificial photoperiod; serum LH concentrations and pulsatile LH patterns provided an index of neuroendocrine reproductive activity. Mothers were transferred from natural photoperiod to artificial long days (16 h light:8 h dark) at the summer solstice so that no decrease in photoperiod would be experienced. These ewes began reproductive activity synchronously at the expected time in the autumn. One of each pair of twin lambs was treated exactly as the mothers; to determine the normal timing of puberty the remaining twin was maintained in a photoperiod simulating the natural decrease in daylength. In all 6 control lambs experiencing the simulated natural photoperiod, reproductive activity occurred synchronously at 28 +/- 1 weeks of age (2 October +/- 7 days). However, in their twin sisters which did not experience a decrease in photoperiod, only 2 of 6 lambs had begun reproductive activity by the end of the experiment at 52 weeks of age (March), and these were both delayed relative to their twin control lambs exposed to decreasing daylength. Therefore, a decrease in photoperiod is necessary for the normal timing of puberty in the spring-born, female sheep, whereas seasonally anoestrous, mature sheep can enter the breeding season at a normal time in the absence of decreasing photoperiod. We suggest that the requirement for a decreasing photoperiod by the spring-born lamb reflects its limited photoperiodic history as compared to the adult.  相似文献   

20.
Melatonin suppression of mammary growth in heifers.   总被引:3,自引:0,他引:3  
The objective of this study was to determine if melatonin fed in the middle of a long day (16L:8D) reduces mammary parenchymal growth and reduces serum prolactin in prepubertal heifers, thereby mimicking the effects of a short photoperiod. Sixteen prepubertal Holstein heifers were maintained under natural May to August environmental conditions of Michigan plus supplemental lighting to provide a photoperiod of 16L:8D (lights-on 0600-2200 h). At the midpoint of each day, 8 animals were individually fed melatonin (4 mg/100 kg body weight) and 8 were individually fed vehicle (95% ethanol) in 200 g of a grain concentrate mixture. Blood samples were collected at 1-h intervals for 25 h beginning on Day 67. On Day 70 or 72 heifers were slaughtered. No differences were found in body weight gain between melatonin- and vehicle-fed animals. Parenchyma of mammary glands from melatonin-fed heifers had a lower content (24%) and concentration (17%) of deoxyribonucleic acid but a greater concentration of triglyceride (24%) than that of controls. Mean serum prolactin concentration was 27% lower in melatonin-fed animals. In both groups, serum concentrations of prolactin varied throughout the day, with greatest values occurring between 1100 and 1800 h in positive association with changes in ambient temperature. We conclude that melatonin orally administered to prepubertal heifers reduced mammary parenchymal growth and concentration of prolactin in serum. The data support the hypothesis that melatonin mimics photoperiodic effects on mammary growth and prolactin secretion in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号