首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonucleotide reductases (RNRs) are uniquely responsible for converting nucleotides to deoxynucleotides in all dividing cells. The three known classes of RNRs operate through a free radical mechanism but differ in the way in which the protein radical is generated. Class I enzymes depend on oxygen for radical generation, class II uses adenosylcobalamin, and the anaerobic class III requires S-adenosylmethionine and an iron–sulfur cluster. Despite their metabolic prominence, the evolutionary origin and relationships between these enzymes remain elusive. This gap in RNR knowledge can, to a major extent, be attributed to the fact that different RNR classes exhibit greatly diverged polypeptide chains, rendering homology assessments inconclusive. Evolutionary studies of RNRs conducted until now have focused on comparison of the amino acid sequence of the proteins, without considering how they fold into space. The present study is an attempt to understand the evolutionary history of RNRs taking into account their three-dimensional structure. We first infer the structural alignment by superposing the equivalent stretches of the three-dimensional structures of representatives of each family. We then use the structural alignment to guide the alignment of all publicly available RNR sequences. Our results support the hypothesis that the three RNR classes diverged from a common ancestor currently represented by the anaerobic class III. Also, lateral transfer appears to have played a significant role in the evolution of this protein family.  相似文献   

2.
3.
4.
Ribonucleotide reductases (RNRs) use radical-based chemistry to convert ribonucleotides into deoxyribonucleotides, an essential step in DNA biosynthesis and repair. There are multiple RNR classes, the best studied of which is the class Ia RNR that is found in Escherichia coli, eukaryotes including humans, and many pathogenic and nonpathogenic prokaryotes. This review covers recent advances in our understanding of class Ia RNRs, including a recent reporting of a structure of the active state of the E. coli enzyme and the impacts that the structure has had on spurring research into the mechanism of long-range radical transfer. Additionally, the review considers other recent structural and biochemical research on class Ia RNRs and the potential of that work for the development of anticancer and antibiotic therapeutics.  相似文献   

5.
Chlamydia trachomatis ribonucleotide reductase (RNR) is a class Ic RNR. It has two homodimeric subunits: proteins R1 and R2. Class Ic protein R2 in its most active form has a manganese–iron metal cofactor, which functions in catalysis like the tyrosyl radical in classical class Ia and Ib RNRs. Oligopeptides with the same sequence as the C‐terminus of C. trachomatis protein R2 inhibit the catalytic activity of C. trachomatis RNR, showing that the class Ic enzyme shares a similar highly specific inhibition mechanism with the previously studied radical‐containing class Ia and Ib RNRs. The results indicate that the catalytic mechanism of this class of RNRs with a manganese–iron cofactor is similar to that of the tyrosyl‐radical‐containing RNRs, involving reversible long‐range radical transfer between proteins R1 and R2. The competitive binding of the inhibitory R2‐derived oligopeptide blocks the transfer pathway. We have constructed three‐dimensional structure models of C. trachomatis protein R1, based on homologous R1 crystal structures, and used them to discuss possible binding modes of the peptide to protein R1. Typical half maximal inhibitory concentration values for C. trachomatis RNR are about 200 µ m for a 20‐mer peptide, indicating a less efficient inhibition compared with those for an equally long peptide in the Escherichia coli class Ia RNR. A possible explanation is that the C. trachomatis R1/R2 complex has other important interactions, in addition to the binding mediated by the R1 interaction with the C‐terminus of protein R2. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
7.
8.
Ribonucleotide reductase (RNR) is an essential enzyme for all living organisms since is the responsible for the last step in the synthesis of the four deoxyribonucleotides (dNTPs) necessary for DNA replication and repair. In this work, we have investigated the expression of the three-RNR classes (Ia, Ib and III) during Escherichia coli biofilm formation. We show the temporal and spatial importance of class Ib and III RNRs during this process in two different E. coli wild-type strains, the commensal MG1655 and the enteropathogenic and virulent E2348/69, the prototype for the enteropathogenic E. coli (EPEC). We have established that class Ib RNR, so far considered cryptic, play and important role during biofilm formation. The implication of this RNR class under the specific growth conditions of biofilm formation is discussed.  相似文献   

9.
10.
Staphylococci contain a class Ib NrdEF ribonucleotide reductase (RNR) that is responsible, under aerobic conditions, for the synthesis of deoxyribonucleotide precursors for DNA synthesis and repair. The genes encoding that RNR are contained in an operon consisting of three genes, nrdIEF, whereas many other class Ib RNR operons contain a fourth gene, nrdH, that determines a thiol redoxin protein, NrdH. We identified a 77-amino-acid open reading frame in Staphylococcus aureus that resembles NrdH proteins. However, S. aureus NrdH differs significantly from the canonical NrdH both in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that S. aureus NrdH is a thiol redox protein. It is not essential for aerobic or anaerobic growth and appears to have a marginal role in protection against oxidative stress. In vitro, S. aureus NrdH was found to be an efficient reductant of disulfide bonds in low-molecular-weight substrates and proteins using dithiothreitol as the source of reducing power and an effective reductant for the homologous class Ib RNR employing thioredoxin reductase and NADPH as the source of the reducing power. Its ability to reduce NrdEF is comparable to that of thioredoxin-thioredoxin reductase. Hence, S. aureus contains two alternative thiol redox proteins, NrdH and thioredoxin, with both proteins being able to function in vitro with thioredoxin reductase as the immediate hydrogen donors for the class Ib RNR. It remains to be clarified under which in vivo physiological conditions the two systems are used.Ribonucleotide reductases (RNRs) are essential enzymes in all living cells, providing the only known de novo pathway for the biosynthesis of deoxyribonucleotides, the immediate precursors of DNA synthesis and repair. RNRs catalyze the controlled reduction of all four ribonucleotides to maintain a balanced pool of deoxyribonucleotides during the cell cycle (29). Three main classes of RNRs are known. Class I RNRs are oxygen-dependent enzymes, class II RNRs are oxygen-independent enzymes, and class III RNRs are oxygen-sensitive enzymes. Class I RNRs are divided into two subclasses, subclasses Ia and Ib.Staphylococcus aureus is a Gram-positive facultative aerobe and a major human pathogen (24). S. aureus contains class Ib and class III RNRs, which are essential for aerobic and anaerobic growth, respectively (26). The class Ib NrdEF RNR is encoded by the nrdE and nrdF genes: NrdE contains the substrate binding and allosteric binding sites, and NrdF contains the catalytic site for ribonucleotide reduction. The S. aureus nrdEF genes form an operon containing a third gene, nrdI, the product of which, NrdI, is a flavodoxin (5, 33). Many other bacteria such as Escherichia coli (16), Lactobacillus lactis (17), and Mycobacterium and Corynebacterium spp. possess class Ib RNR operons that contain a fourth gene, nrdH (30, 44, 50), whose product, NrdH, is a thiol-disulfide redoxin (16, 17, 40, 43, 49). More-complex situations are found for some bacteria, where the class Ib RNR operon may be duplicated and one or more of the nrdI and nrdH genes may be missing or located in another part of the chromosome (29).NrdH proteins are glutaredoxin-like protein disulfide oxidoreductases that alter the redox state of target proteins via the reversible oxidation of their active-site dithiol proteins. NrdH proteins function with high specificity as electron donors for class I RNRs (9, 16-18). They are widespread in bacteria, particularly in those bacteria that lack glutathione (GSH), where they function as a hydrogen donor for the class Ib RNR (12, 16, 17). In E. coli, which possesses class Ia and class Ib RNRs, NrdH functions in vivo as the primary electron donor for the class Ib RNR, whereas thioredoxin or glutaredoxin is used by the class Ia NrdAB RNR (12, 17). NrdH redoxins contain a conserved CXXC motif, have a low redox potential, and can reduce insulin disulfides. NrdH proteins possess an amino acid sequence similar to that of glutaredoxins but behave functionally more like thioredoxins. NrdH proteins are reduced by thioredoxin reductase but not by GSH and lack those residues in glutaredoxin that bind GSH and the GSH binding cleft (39, 40). The structures of the E. coli and Corynebacterium ammoniagenes NrdH redoxins reveal the presence of a wide hydrophobic pocket at the surface, like that in thioredoxin, that is presumed to be involved in binding to thioredoxin reductase (39, 40). NrdI proteins are flavodoxin proteins that function as electron donors for class Ib RNRs and are involved in the maintenance of the NrdF diferric tyrosyl radical (5, 33). In Streptococcus pyogenes, NrdI is essential for the activity of the NrdHEF system in a heterologous E. coli in vivo complementation assay (33). Class Ib RNRs are proposed to depend on two specific electron donors, NrdH, which provides reducing power to the NrdE subunit, and NrdI, which supplies electrons to the NrdF subunit (33).In this report we identify an open reading frame (ORF) in S. aureus encoding an NrdH-like protein with partial sequence relatedness to the E. coli, Salmonella enterica serovar Typhimurium, L. lactis, and C. ammoniagenes NrdH proteins. In contrast to these bacteria, the S. aureus nrdH gene does not form part of the class Ib RNR operon. The S. aureus NrdH protein differs in its structure from the canonical NrdH in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that in vitro, S. aureus NrdH reduces protein disulfides and is an electron donor for the homologous class Ib NrdEF ribonucleotide reductase.  相似文献   

11.
Ribonucleotide reductases (RNRs) catalyze all new production in nature of deoxyribonucleotides for DNA synthesis by reducing the corresponding ribonucleotides. The reaction involves the action of a radical that is produced differently for different classes of the enzyme. Class I enzymes, which are present in eukaryotes and microorganisms, use an iron center to produce a stable tyrosyl radical that is stored in one of the subunits of the enzyme. The other classes are only present in microorganisms. Class II enzymes use cobalamin for radical generation and class III enzymes, which are found only in anaerobic organisms, use a glycyl radical. The reductase activity is in all three classes contained in enzyme subunits that have similar structures containing active site cysteines. The initiation of the reaction by removal of the 3′-hydrogen of the ribose by a transient cysteinyl radical is a common feature of the different classes of RNR. This cysteine is in all RNRs located on the tip of a finger loop inserted into the center of a special barrel structure. A wealth of structural and functional information on the class I and class III enzymes can now give detailed views on how these enzymes perform their task. The class I enzymes demonstrate a sophisticated pattern as to how the free radical is used in the reaction, in that it is only delivered to the active site at exactly the right moment. RNRs are also allosterically regulated, for which the structural molecular background is now starting to be revealed.  相似文献   

12.
Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.  相似文献   

13.
Structure, function, and mechanism of ribonucleotide reductases   总被引:5,自引:0,他引:5  
Ribonucleotide reductase (RNR) is the enzyme responsible for the conversion of ribonucleotides to 2'-deoxyribonucleotides and thereby provides the precursors needed for both synthesis and repair of DNA. In the recent years, many new crystal structures have been obtained of the protein subunits of all three classes of RNR. This review will focus upon recent structural and spectroscopic studies, which have offered deeper insight to the mechanistic properties as well as evolutionary relationship and diversity among the different classes of RNR. Although the three different classes of RNR enzymes depend on different metal cofactors for the catalytic activity, all three classes have a conserved cysteine residue at the active site located on the tip of a protein loop in the centre of an alpha/beta-barrel structural motif. This cysteine residue is believed to be converted into a thiyl radical that initiates the substrate turnover in all three classes of RNR. The functional and structural similarities suggest that the present-day RNRs have all evolved from a common ancestral reductase. Nevertheless, the different cofactors found in the three classes of RNR make the RNR proteins into interesting model systems for quite diverse protein families, such as diiron-oxygen proteins, cobalamin-dependent proteins, and SAM-dependent iron-sulfur proteins. There are also significant variations within each of the three classes of RNR. With new structures available of the R2 protein of class I RNR, we have made a comparison of the diiron centres in R2 from mouse and Escherichia coli. The R2 protein shows dynamic carboxylate, radical, and water shifts in different redox forms, and new radical forms are different from non-radical forms. In mouse R2, the binding of iron(II) or cobalt(II) to the four metal sites shows high cooperativity. A unique situation is found in RNR from baker's yeast, which is made up of heterodimers, in contrast to homodimers, which is the normal case for class I RNR. Since the reduction of ribonucleotides is the rate-limiting step of DNA synthesis, RNR is an important target for cell growth control, and the recent finding of a p53-induced isoform of the R2 protein in mammalian cells has increased the interest for the role of RNR during the different phases of the cell cycle.  相似文献   

14.
Ribonucleotide reductases (RNRs) convert nucleotides to deoxynucleotides in all organisms. Activity of the class Ia and Ib RNRs requires a stable tyrosyl radical (Y?), which can be generated by the reaction of O2 with a diferrous cluster on the β subunit to form active diferric-Y? cofactor. Recent experiments have demonstrated, however, that in vivo the class Ib RNR contains an active dimanganese(III)-Y? cofactor. The similar metal binding sites of the class Ia and Ib RNRs, their ability to bind both MnII and FeII, and the activity of the class Ib RNR with both diferric-Y? and dimanganese(III)-Y cofactors raise the intriguing question of how the cell prevents mismetallation of these essential enzymes. The presence of the class Ib RNR in numerous pathogenic bacteria also highlights the importance of manganese for these organisms' growth and virulence.  相似文献   

15.
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, the building blocks of DNA. RNRs are specific for either ribonucleoside diphosphates or triphosphates as substrates. As far as is known, oxygen-dependent class I RNRs (NrdAB) all reduce ribonucleoside diphosphates, and oxygen-sensitive class III RNRs (NrdD) are all ribonucleoside triphosphate reducers, whereas the adenosylcobalamin-dependent class II (NrdJ) contains both ribonucleoside diphosphate and triphosphate reducers. However, it is unknown how this specificity is conveyed by the active site of the enzymes and how this feature developed in RNR evolution. By structural comparison of the active sites in different RNRs, we identified the apical loop of the phosphate-binding site as a potential structural determinant of substrate specificity. Grafting two residues from this loop from a diphosphate- to a triphosphate-specific RNR caused a change in preference from ribonucleoside triphosphate to diphosphate substrates in a class II model enzyme, confirming them as the structural determinants of phosphate specificity. The investigation of the phylogenetic distribution of this motif in class II RNRs yielded a likely monophyletic clade with the diphosphate-defining motif. This indicates a single evolutionary-split event early in NrdJ evolution in which diphosphate specificity developed from the earlier triphosphate specificity. For those interesting cases where organisms contain more than one nrdJ gene, we observed a preference for encoding enzymes with diverse phosphate specificities, suggesting that this varying phosphate specificity confers a selective advantage.  相似文献   

16.
Ribonucleotide reductase (RNR) is an essential enzyme that converts ribonucleotides to deoxyribonucleotides and is a promising antibiotic target, but few RNRs have been structurally characterized. We present the use of the chameleon, a commercially-available piezoelectric cryogenic electron microscopy plunger, to address complex denaturation in the Neisseria gonorrhoeae class Ia RNR. Here, we characterize the extent of denaturation of the ring-shaped complex following grid preparation using a traditional plunger and using a chameleon with varying dispense-to-plunge times. We also characterize how dispense-to-plunge time influences the amount of protein sample required for grid preparation and preferred orientation of the sample. We demonstrate that the fastest dispense-to-plunge time of 54 ms is sufficient for generation of a data set that produces a high quality structure, and that a traditional plunging technique or slow chameleon dispense-to-plunge times generate data sets limited in resolution by complex denaturation. The 4.3 Å resolution structure of Neisseria gonorrhoeae class Ia RNR in the inactive α4β4 oligomeric state solved using the chameleon with a fast dispense-to-plunge time yields molecular information regarding similarities and differences to the well studied Escherichia coli class Ia RNR α4β4 ring.  相似文献   

17.
18.
In most organisms, transition metal ions are necessary cofactors of ribonucleotide reductase (RNR), the enzyme responsible for biosynthesis of the 2′-deoxynucleotide building blocks of DNA. The metal ion generates an oxidant for an active site cysteine (Cys), yielding a thiyl radical that is necessary for initiation of catalysis in all RNRs. Class I enzymes, widespread in eukaryotes and aerobic microbes, share a common requirement for dioxygen in assembly of the active Cys oxidant and a unique quaternary structure, in which the metallo- or radical-cofactor is found in a separate subunit, β, from the catalytic α subunit. The first class I RNRs, the class Ia enzymes, discovered and characterized more than 30 years ago, were found to use a diiron(III)-tyrosyl-radical Cys oxidant. Although class Ia RNRs have historically served as the model for understanding enzyme mechanism and function, more recently, remarkably diverse bioinorganic and radical cofactors have been discovered in class I RNRs from pathogenic microbes. These enzymes use alternative transition metal ions, such as manganese, or posttranslationally installed tyrosyl radicals for initiation of ribonucleotide reduction. Here we summarize the recent progress in discovery and characterization of novel class I RNR radical-initiating cofactors, their mechanisms of assembly, and how they might function in the context of the active class I holoenzyme complex.  相似文献   

19.

Objectives

Insectivory likely contributed to survival of early humans in diverse conditions and influenced human cognitive evolution through the need to develop harvesting tools. In living primates, insectivory is a widespread behavior and frequently seasonal, although previous studies do not always agree on reasons behind this. Since western gorillas (Gorilla gorilla) diet is largely affected by seasonal variation in fruit availability, we aimed to test three non-mutually exclusive hypotheses (habitat use, frugivory and rainfall) to explain seasonality in termite feeding across age/sex classes in three habituated groups (Nindividuals = 27) in Central Africa.

Materials and Methods

We used 4 years of ranging, scan and continuous focal sampling records of gorillas (Nranging days = 883, Nscans = 12,384; Nhours = 891) in addition to 116 transects recording vegetation and termite mound distribution.

Results

Depending on the age/sex classes, we found support for all three hypotheses. Time spent in termite-rich vegetation positively impacted termite consumption in all age/sex classes, but subadults. Lengthier travels increased termite feeding in females but decreased it in subadults. Frugivory decreased termite consumption in adults. Daily rainfall had a positive effect on termite feeding and foraging in silverbacks and juveniles, but a negative effect in subadults. For females, rainfall had a positive effect on termite feeding, but a negative effect for termite foraging.

Discussion

In great apes, seasonal insectivory seems to be multifactorial and primarily opportunistic with important differences among age/sex classes. While insectivory has potentials to be traditional, it likely played a crucial role during primate evolution (including ours), allowing diet flexibility in changing environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号