首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes.  相似文献   

2.
1. Alternative states are a widely recorded phenomenon in shallow lakes, which may shift between turbid‐ and clear‐water conditions. Here, we investigate whether such shifts in a tropical floodplain pond may be related to the effect of the flood pulse regime on the community structures of fish and macrophytes. 2. Using a long‐term data set, we demonstrate how benthic fish migration together with colonisation by submerged plants affected the transition from a turbid to a macrophyte‐dominated state in a floodplain pond without top‐down control. 3. In our study, the turbid state occurred mostly during low water phases and was largely characterised by high values for the biomass of benthic fish, chlorophyll‐a and total phosphorous. 4. During the period of rising water levels, the migration of benthic fish out of the pond occurs simultaneously with the establishment of submerged plants, while water turbidity decreases along with phytoplankton and nutrient concentrations, inducing a clear‐water phase. However, when submerged plants are absent and fish migration is low, a transient state is generated. 5. We suggest that, in contrast to temperate ponds and shallow lakes, where the main driving mechanisms establishing alternative states are related to cascading effects via the food chain, in tropical ponds and shallow lakes it is resuspension of sediments by benthic fish that plays the most significant role in establishing alternative states. However, the effect of the flood pulse regime plays an important role in the temporal dynamics of fish community structure by controlling benthic fish migration.  相似文献   

3.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

4.
1. Structural complexity may stabilise predator–prey interactions and affect the outcome of trophic cascades by providing prey refuges. In deep lakes, vulnerable zooplankton move vertically to avoid fish predation. In contrast, submerged plants often provide a diel refuge against fish predation for large‐bodied zooplankton in shallow temperate lakes, with consequences for the whole ecosystem. 2. To test the extent to which macrophytes serve as refuges for zooplankton in temperate and subtropical lakes, we introduced artificial plant beds into the littoral area of five pairs of shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N). We used plants of different architecture (submerged and free‐floating) along a gradient of turbidity over which the lakes were paired. 3. We found remarkable differences in the structure (taxon‐richness at the genus level, composition and density) of the zooplankton communities in the littoral area between climate zones. Richer communities of larger‐bodied taxa (frequently including Daphnia spp.) occurred in the temperate lakes, whereas small‐bodied taxa characterised the subtropical lakes. More genera and a higher density of benthic/plant‐associated cladocerans also occurred in the temperate lakes. The density of all crustaceans, except calanoid copepods, was significantly higher in the temperate lakes (c. 5.5‐fold higher). 4. Fish and shrimps (genus Palaemonetes) seemed to exert a stronger predation pressure on zooplankton in the plant beds in the subtropical lakes, while the pelagic invertebrate Chaoborus sp. was slightly more abundant than in the temperate lakes. In contrast, plant‐associated predatory macroinvertebrates were eight times more abundant in the temperate than in the subtropical lakes. 5. The artificial submerged plants hosted significantly more cladocerans than the free‐floating plants, which were particularly avoided in the subtropical lakes. Patterns indicating diel horizontal migration were frequently observed for both overall zooplankton density and individual taxa in the temperate, but not the subtropical, lakes. In contrast, patterns of diel vertical migration prevailed for both the overall zooplankton and for most individual taxa in the subtropics, irrespective of water turbidity. 6. Higher fish predation probably shapes the general structure and dynamics of cladoceran communities in the subtropical lakes. Our results support the hypothesis that horizontal migration is less prevalent in the subtropics than in temperate lakes, and that no predator‐avoidance behaviour effectively counteracts predation pressure in the subtropics. Positive effects of aquatic plants on water transparency, via their acting as a refuge for zooplankton, may be generally weak or rare in warm lakes.  相似文献   

5.
Macrophytes may enhance grazing on phytoplankton by providing a refuge for zooplankton against fish predation. Loss of macrophytes can trigger sudden degradation of water clarity (regime shift) in lakes. However, the presence of piscivores may drive planktivorous fish to take refuge amongst littoral macrophytes. To address the possibility of regime shifts, I here constructed an empirically based model that combined population dynamics of organisms with game theory for optimal habitat selection, taking into consideration the trophic structure, lake size and eutrophication. The model showed that macrophytes generally acted as a refuge for zooplankton, rather than for fish. The model predicted that regime shifts were more likely in small, shallow lakes and that the presence of macrophytes raised the possibility of regime shifts. The present study demonstrated that the fast dynamics of animal behaviour could lead to regime shifts, in connection with slower variables such as nutrient loading.  相似文献   

6.
Restoration of shallow lakes to a clear-water state, often characterized by high submerged macrophyte cover and a high proportion of piscivores such as perch, Perca fluviatilis L., frequently involves removal of a large proportion of the zoobenthivorous fish, such as bream, Abramis brama L., and roach, Rutilus rutilus L. (i.e. biomanipulation). However, establishment of submerged macrophytes is often delayed following fish removal. This is unfortunate because plant beds typically host high densities of the macroinvertebrates constituting the diet of small perch and thus help perch to go through the bottleneck from feeding on macroinvertebrates to feeding on fish. Establishment of artificial plant beds may be a useful tool to enhance macroinvertebrate population growth and thus food resources for small perch until the natural plants have established. To investigate this restoration option, we studied during two growing seasons (June–October) the composition and abundance of the macroinvertebrate community in artificial plant beds installed in shallow Lake Væng (Denmark) comprising the initial phase of a biomanipulation effort by fish removal. Lake areas with artificial plant beds exhibited substantially higher macroinvertebrate densities than the lake bottom. This suggests that artificial plant beds may be used as feeding grounds for small perch, similarly to the well-known refuge effect for zooplankton against fish predation. In this way, artificial plant beds could help maintain a clear-water state during the transient period when natural submerged vegetation is not yet established in the lake.  相似文献   

7.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

8.
1. Different behavioural responses of planktonic animals to their main predators, fish, have been reported from shallow lakes. In north temperate lakes, large‐bodied zooplankton may seek refuge from predation among macrophytes, whereas in subtropical lakes, avoidance of macrophytes has been observed. The prevalent behaviour probably depends on the characteristics of the fish community, which in Mediterranean lakes is typically dispersed in both the open water zone and in the littoral, as in temperate lakes, and is dominated by small size classes, as in subtropical lakes. 2. We performed ‘habitat choice’ experiments to test the response of Daphnia magna to predation cues at both the horizontal and vertical level by mimicking a ‘shallow littoral’ zone with plants and a ‘deeper pelagic’ zone with sediments. 3. Initial separate response experiments showed that natural plants, artificial plants and predation cues all repelled D. magna in the absence of other stimuli, while sediments alone did not trigger any significant response by D. magna. 4. The habitat choice experiments showed that, in the presence of predation cues and absence of plants, Daphnia moved towards areas with sediment. In the presence of both plants and sediments, Daphnia moved away from the plants towards the sediments under both shallow and deep water treatment conditions. 5. Based on these results, we suggest that Daphnia in Mediterranean shallow lakes avoid submerged macrophytes and instead prefer to hide near the sediment when exposed to predation risk, as also observed in subtropical shallow lakes. This pattern is not likely to change with water level alterations, a common feature of lakes in the region, even if the effectiveness of the refuge may be reduced.  相似文献   

9.
1. The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2. We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3. Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4. Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large‐bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5. Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top‐down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants.  相似文献   

10.
Jeppesen  E.  Søndergaard  M.  Kanstrup  E.  Petersen  B.  Eriksen  R. B.  Hammershøj  M.  Mortensen  E.  Jensen  J. P.  Have  A. 《Hydrobiologia》1994,275(1):15-30
The effects of nutrients on the biological structure of brackish and freshwater lakes were compared. Quantitative analysis of late summer fish, zooplankton, mysid and macrophyte populations was undertaken in 20–36 shallow brackish lakes of various trophic states and the findings compared with a similar analysis of shallow freshwater lakes based on either sampling (fish) or existing data (zooplankton, mysids and macrophytes). Special emphasis was placed on differences in pelagic top-down control. Whereas the fish biomass (CPUE, multiple mesh-size gill nets) rose with increasing P-concentration in freshwater lakes, that of brackish lakes was markedly reduced at P-concentrations above ca. 0.4 mg P l-1 and there was a concomitant shift to exclusive dominance by the small sticklebacks (Gasterosteus aculeatus and Pungitius pungitius); as a result, fish density remained relatively high. Mysids (Neomysis integer) were found at a salinity greater than 0.5 and increased substantially with increasing P-concentration, reaching levels as high as 13 ind. l-1. This is in contrast to the carnivorous zooplankton of freshwater lakes, which are most abundant at intermediate P levels. The efficient algal controller, Daphnia was only found at a salinity below 2 and N. integer in lakes with a salinity above 0.5. Above 2 the filter-feeding zooplankton were usually dominated by the less efficient algal controllers Eurytemora and Acartia. In contrast to freshwater lakes, no shift to a clearwater state was found in eutrophic brackish lakes when submerged macrophytes became abundant. We conclude that predation pressure on zooplankton is higher and algal grazing capacity lower in brackish eutrophic-hypertrophic lakes than in comparable freshwater lakes, and that the differences in trophic structure of brackish and freshwater lakes have major implications for the measures available to reduce the recovery period following a reduction in nutrient loading. From the point of view of top-down control, the salinity threshold dividing freshwater and brackish lakes is much lower than the conventionally defined 5.  相似文献   

11.
The field of lake palaeoecology has undergone significant changes. Powerful quantitative techniques have been developed to investigate anthropogenic impacts on lakes. Inclusion of zooplankton and benthic chydorid cladocerans has provided previously unavailable information on the historical development of planktivorous fish populations, submerged macrophytes and lake production, and has been used to document exotic species introductions, rapid genetic evolution and human disturbance of lakes. In particular, new techniques now allow a more complete evaluation of changes in past and present trophic structure to be made, and provide insights on the rapid evolutionary responses of aquatic invertebrate communities to anthropogenic perturbation of lakes.  相似文献   

12.
A number of mechanisms result in a feedback between water clarity and macrophytes and, consequently, the occurrence of alternative stable states in shallow lakes. We hypothesize that bottom-up mechanisms and interactions within the benthic food web are more important in a charophyte-dominated clear-water state, while top-down mechanism and interactions in the planktonic food web prevail at angiosperm dominance. Charophytes, which dominate at lower nutrient concentrations and develop higher densities than most angiosperms, can have a higher influence on sedimentation, resuspension, and water column nutrients. During dominance of dense submerged vegetation like charophytes, zooplankton can be hampered by low food quality and quantity and by high predation pressure from juvenile fish, which in turn are favoured by the high refuge potential of this vegetation. Grazing pressure from zooplankton on phytoplankton can therefore be low in charophytes, but the main feedback in angiosperm-dominated ecosystems. Charophytes offer a higher surface than most angiosperms to periphyton, which favors benthic invertebrates. These support macrophytes by grazing periphyton and constitute a central link in a trophic cascade from fish to periphyton and macrophytes. To test these hypotheses, more experiments and field measurements comparing the effect of charophytes and angiosperms on water clarity are needed.  相似文献   

13.
Low phytoplankton biomass usually occurs in the presence of submerged macrophytes, possibly because submerged macrophytes enhance top-down control of phytoplankton by offering a refuge for efficient grazers like Daphnia against fish predation. However, other field studies also suggest that submerged macrophytes suppress phytoplankton in the absence of Daphnia. In order to investigate these mechanisms further, we conducted an outdoor mesocosm experiment to study the effect of submerged macrophytes (Elodea nuttallii) on phytoplankton and zooplankton biomass. The experiment combined four nutrient addition levels (0, 10, 100, and 1000 μg P l−1; N/P ratio: 16) with three macrophyte levels (no macrophytes, artificial macrophytes, and real macrophytes). We inoculated the tanks with species-rich inocula of phytoplankton and zooplankton but excluded fish or macro-invertebrates. Probably due to the lack of predators in the mesocosms, potential grazing rates of pelagic zooplankton (estimated from zooplankton biomass) did not differ between the macrophyte treatment combinations. Compared to the treatment combinations without macrophytes, lower phytoplankton biomass occurred in the treatment combinations with real macrophytes at all the nutrient addition levels and in those with artificial macrophytes at all the nutrient levels except the highest. Significantly, higher abundances of plant-associated filter feeders (Simocephalus vetulus and Ceriodaphnia spp.) occurred in the treatment combinations with real and artificial macrophytes. The estimated potential grazing rate of these plant-associated filter feeders indicated that these filter feeders could be responsible for the lower phytoplankton biomass in the presence of real and artificial macrophytes. Our results suggest that the plant-associated filter feeders may be significant grazers in vegetated shallow lakes.  相似文献   

14.
Biomanipulation through fish removal is a tool commonly used to restore a clear-water state in lakes. Biomanipulation of ponds is, however, less well documented, although their importance for biodiversity conservation and public amenities is undisputed. In ponds, a more complete fish removal can be carried out as compared to lakes and therefore a stronger response is expected. Fish recolonization can, however, potentially compromise the longer term success of biomanipulation. Therefore, we investigated the impact of fish recolonization on zooplankton, phytoplankton, and nutrients for several years after complete drawdown and fish removal in function of submerged vegetation cover in 12 peri-urban eutrophic ponds situated in Brussels (Belgium). Fish recolonization after biomanipulation had a considerable impact on zooplankton grazers, reducing their size and density substantially, independent of the extent of submerged vegetation cover. Only ponds with <30% cover of submerged vegetation shifted back to a turbid state after fish recolonization, coinciding with an increase in density of small cladocerans, rotifers, and cyclopoid copepods. In ponds with >30% submerged vegetation cover, macrophytes prevented an increase in phytoplankton growth despite the disappearance of large zooplankton grazers. Our results suggest that macrophytes, rather than by providing a refuge for zooplankton grazers, control phytoplankton through other associated mechanisms and confirm that the recovery of submerged macrophytes is essential for biomanipulation success. Although the longer term effect of biomanipulation is disputable, increased ecological quality could be maintained for several years, which is particularly interesting in an urban area where nutrient loading reduction is often not feasible.  相似文献   

15.
Jeppesen  E.  Jensen  J. P.  Kristensen  P.  Søndergaard  M.  Mortensen  E.  Sortkjær  O.  Olrik  K. 《Hydrobiologia》1990,(1):219-227
In order to evaluate short-term and long-term effects of fish manipulation in shallow, eutrophic lakes, empirical studies on relationships between lake water concentration of total phosphorus (P) and the occurrence of phytoplankton, submerged macrophytes and fish in Danish lakes are combined with results from three whole-lake fish manipulation experiments. After removal of less than 80 per cent of the planktivorous fish stock a short-term trophic cascade was obtained in the nutrient regimes, where large cyanobacteria were not strongly dominant and persistent. In shallow Danish lakes cyanobacteria were the most often dominating phytoplankton class in the P-range between 200 and 1 000μg P l−1. Long-term effects are suggested to be closely related to the ability of the lake to establish a permanent and wide distribution of submerged macrophytes and to create self-perpetuating increases in the ratio of piscivorous to planktivorous fish. The maximum depth at which submerged macrophytes occurred, decreased exponentially with increasing P concentration. Submerged macrophytes were absent in lakes>10 ha and with P levels above 250–300μg P l−1, but still abundant in some lakes<3 ha at 650μg P l−1. Lakes with high cover of submerged macrophytes showed higher transparencies than lakes with low cover aboveca. 50μg P l−1. These results support the alternative stable state hypothesis (clear or turbid water stages). Planktivorous fish>10 cm numerically contributed more than 80 per cent of the total planktivorous and piscivorous fish (>10 cm) in the pelagical of lakes with concentrations above 100μg P l−1. Below this threshold level the proportion of planktivores decreased markedly toca. 50 per cent at 22μg P l−1. The extent of the shift in depth colonization of submerged macrophytes and fish stock composition in the three whole-lake fish manipulations follows closely the predictions from the relationships derived from the empirical study. We conclude that a long-term effect of a reduction in the density of planktivorous fish can be expected only when the external phosphorus loading is reduced to below 0.5–2.0 g m−2 y−1. This loading is equivalent to an in-lake summer concentration below 80–150μg P l−1. Furthermore, fish manipulation as a restoration tool seems most efficient in shallow lakes.  相似文献   

16.
Food web management is a frequently used lake restoration method, which aims to reduce phytoplankton biomass by strengthening herbivorous zooplankton through reduction of planktivorous fish. However, in clay‐turbid lakes several factors may reduce the effectivity of food web management. Increasing turbidity reduces the effectivity of fish predation and weakens the link between zooplankton and phytoplankton. Therefore, the effects of fish stock manipulations may not cascade to lower trophic levels as expected. Additionally, in clay‐turbid conditions invertebrate predators may coexist in high densities with planktivorous fish and negate the effects of fish reductions. For instance, in the stratifying regions of the clay‐turbid Lake Hiidenvesi, Chaoborus flavicans is the main regulator of cladocerans and occupies the water column throughout the day, although planktivorous Osmerus eperlanus is very abundant. The coexistence of chaoborids and fish is facilitated by a metalimnetic turbidity peak, which prevents efficient predation by fish. In the shallow parts of the lake, chaoborids are absent despite high water turbidity. We suggest that, generally, the importance of invertebrate predators in relation to vertebrate predators may change along turbidity and depth gradients. The importance of fish predation is highest in shallow waters with low turbidity. When water depth increases, the importance of fish in the top‐down regulation of zooplankton declines, whereas that of chaoborids increases, the change along the depth gradient being moderate in clear‐water lakes and steep in highly turbid lakes. Thus, especially deep clay‐turbid lakes may be problematic for implementing food web management as a restoration tool.  相似文献   

17.
Several studies have shown that submerged macrophytes provide a refuge for zooplankton against fish predation, whereas the role of emergent and floating-leaved species, which are often dominant in eutrophic turbid lakes, is far less investigated. Zooplankton density in open water and amongst emergent and floating-leaved vegetation was monitored in a small, eutrophic lake (Frederiksborg Slotssø) in Denmark during July–October 2006. Emergent and floating-leaved macrophytes harboured significantly higher densities of pelagic as well as plant-associated zooplankton species, compared to the open water, even during periods where the predation pressure was presumably high (during the recruitment of 0+ fish fry). Zooplankton abundance in open water and among vegetation exhibited low values in July and peaked in August. Bosmina and Ceriodaphnia dominated the zooplankton community in the littoral vegetated areas (up to 4,400 ind l?1 among Phragmites australis and 11,000 ind l?1 between Polygonum amphibium stands), whereas the dominant species in the pelagic were Daphnia (up to 67 ind l?1) and Cyclops (41 ind l?1). The zooplankton density pattern observed was probably a consequence of concomitant modifications in the predation pressure, refuge availability and concentration of cyanobacteria in the lake. It is suggested that emergent and floating-leaved macrophytes may play an important role in enhancing water clarity due to increased grazing pressure by zooplankton migrating into the plant stands. As a consequence, especially in turbid lakes, the ecological role of these functional types of vegetation, and not merely that of submerged macrophyte species, should be taken into consideration.  相似文献   

18.
Shallow lakes can occur in two alternative stable states, a clear-water state and a turbid state. This is associated with separate assemblages of fish, zooplankton and plants. Little is known about whether macroinvertebrate assemblages differ across both stable states. This study investigated this in a connected set of three turbid and three clear-water shallow lakes. To overcome confounding effects of differences in spatial structure of macrophytes in turbid and clear-water lakes, we sampled three microhabitats that occurred in both alternative stable states: open water, sago pondweed (Potamogeton pectinatus) and reed (Phragmites australis). Univariate analyses indicated no differences in the number of organisms, taxon richness or diversity between turbid and clear-water lakes. Multivariate analysis, however, showed significant differences in the macroinvertebrate community structure of both stable states. Nine taxa explained a significant amount of the variation between both lake types, of which seven preferred the clear-water lakes. The number of organisms and the taxon richness were higher in reed than in the other microhabitats, but diversity and evenness did not differ among the microhabitats. Multivariate analyses could separate all three microhabitats. Eight taxa, mainly detritus feeders and collector–gatherers, explained most of the variation in the data and preferred the reed microhabitat. The effects of stable state (6.8% explained variance) and microhabitat (13.1% explained variance) on the macroinvertebrate assemblages were largely independent from each other (1.5% shared variance). Although macroinvertebrates are not implemented in the initial theory of stable states, our results show clearly different assemblages across both stable states.  相似文献   

19.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

20.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号