首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated ammonia-assimilating microorganisms from the livestock manure treatment systems and evaluated their ammonia-assimilating ability. Many isolates utilized ammonia at high rates when they were purely cultivated in a nitrogen-limited medium to which sterilized lagoon extract had been added. Some isolates that were immobilized in polyvinyl alcohol (PVA) utilized ammonia present in the media containing viable lagoon microorganisms. Staining with 4′,6′-diamidino-2-phenylindole (DAPI) indicated that the immobilized high ammonia-assimilating isolates grew dominantly within the PVA beads. High ammonia-assimilating isolates in the mixed culture containing viable lagoon microorganisms were identified as Pseudomonas spp. and member of Rhizobiaceae species by partial sequencing of the 16S ribosomal DNA.  相似文献   

2.
Nine microsatellite markers were characterized in the fungus Botrytis cinerea. Genomic DNA sequences from the partial sequencing of 12 000 bacterial artificial chromosome (BAC) clones, were screened by BLAST for various microsatellite motives, and primer pairs were designed. Cross‐amplification and polymorphism were assessed on 49 isolates from B. cinerea and two related species, collected from natural populations on several plants and locations.  相似文献   

3.
The study of the microbial ecology in extreme acidic environments has provided an important foundation for the development of mineral biotechnology. The present investigation reports the isolation, identification and molecular characterization of indigenous manganese (Mn) solubilizing acidophilic bacterial strains from mine water samples from Odisha, India. Four morphologically distinct bacterial strains showing visible growth on Mn-supplemented plates of varying pH were isolated and identified. Mn solubilizing ability of the isolates was tested by growing them on Mn-supplemented agar plates. The appearance of lightening around the growing colonies of all the isolates demonstrated their Mn solubilizing ability in the medium. 16 S rRNA sequencing was carried out and the bacterial isolates were taxonomically classified as Enterobacter sp. AMSB1, Bacillus cereus AMSB3, Bacillus nealsonii AMSB4 and Staphylococcus hominis AMSB5. The evolutionary timeline was studied by constructing neighbor-joining phylogenetic trees. The ability of acidophilic microorganisms to solubilize heavy metals is supported by five basic mechanisms which include: enzymatic conversion, metal effluxing, reduction in sensitivity of cellular targets, intra- or extracellular sequestration, and permeability barrier exclusion. Such ecological studies undoubtedly will provide insights into Mn biogeochemical processes occurring in leaching environments. The application of acidophilic microbiology in mineral biorecovery and beneficiation has a large future potential.  相似文献   

4.
Microbial communities thriving at two hot springs, Hammam Pharaon (Pharaoh's Bath) and Oyoun Mossa (Moses springs), in Egypt was studied by cultural and molecular methods. Thirteen morphologically distinct strains of facultative anaerobic thermophilic bacterial isolates have been characterized and identified using phenotypic and genotypic characters including RAPD-PCR, ERIC-PCR typing, plasmid analysis and 16S rRNA sequencing. All isolates produced plasmid DNA with various sizes ranging from 0.7 kb to a larger plasmid 7.2 kb. The bacterial strains could tolerate a temperature range between 45 to 85°C and a pH between 4–11. Also, sulphate-reducing bacteria (SRB) in the thermal springs were investigated with combined biochemical and molecular approaches. A sulphate-reducing bacteria medium containing lactate was used for enrichment and isolation, which yielded Gram negative, rod shaped, anaerobic, non-spore-forming and motile bacteria capable of reducing sulphate to sulphide. These grew at temperatures ranging from 30 to 50°C and could use pyruvate, lactate and ethanol as electron donors. The dissimilatory sulphite reductase (DSR) gene sequences of eleven representative isolates revealed that the strains belonged to the sulphur reducing bacterial species Desulfovibrio vulgaris. 16S rRNA gene partial sequence results indicated the presence of novel or existing species of Bacillus (one species), Anoxybacillus (four species) and Geobacillus (eight species). In this study phenotypic and genotypic diversity were applied for the first time to differentiate thermophilic bacteria of such geothermal sites in Sinai, Egypt.  相似文献   

5.
The rhizosphere, the narrow zone of soil around living roots, is characterized by root exudates which attract soil microorganisms. Most importantly, certain soil fungi establish symbiotic interactions with fine roots which enhance nutrient availability for the plant partner (mycorrhiza). The establishment of such a symbiosis can be affected by soil bacteria. In this study we isolated Gram-positive soil bacteria from the rhizosphere of a spruce stand rich with fly agaric (Amanita muscaria) fruiting bodies. Using a coculture technique in Petri dishes, bacterial isolates were characterized by their effect on the growth of fungal hyphae. A group of bacterial strains were identified which significantly promoted growth of fly agaric hyphae. One of these strains was shown to additionally inhibit growth of pathogenic fungi such as Armillaria obscura (wide host range) and Heterobasidion annosum (causes wood decay in conifers). Taxonomic characterization of the effective bacterial isolates by their morphological appearance, by the analysis of diaminopimelic acid, cell wall sugars, and DNA sequencing (16S rDNA) identified them as actinomycetes, some of which are not yet contained in data banks.  相似文献   

6.
Artificially cultivating Chroogomphus rutilus is too inefficient to be commercially feasible. Furthermore, isolating C. rutilus mycelia in the wild is difficult. Thus, it is important to determine the natural habitat of its fruiting body. This study focused on the ecology of the C. rutilus habitat to isolate and classify beneficial microorganisms that could affect its growth, which could be used in future research on artificial cultivation. In total, 342 isolates were isolated from soil samples collected around a C. rutilus colony in the Beijing region. Of these, 22 bacterial and 14 fungal isolates were selected for sequencing and phylogenetic analysis, based on their growth characteristics and colony morphology. Using 16S rRNA gene sequence analysis, the bacterial isolates were divided into two monophyletic clusters which had significant hits to the genera Bacillus and Pseudomonas, respectively. Using internal transcribed spacer (ITS) sequence analysis, fungal isolates were divided into four monophyletic clusters: Penicillium, Trichoderma, Mortierella, and Bionectria. Moreover, the phylogenetic diversity of these isolates was analysed. The results indicated that numerous microorganisms were present in C. rutilus habitat. This was the first reported examination of the microbiological ecology of C. rutilus.  相似文献   

7.
Summary Differences have been shown in molybdenum uptake by microorganisms from the rhizosphere and soil sampled away from the roots, of the radish,Raphanus sativus L., grown in market garden soils from Napier and Hastings (New Zealand).The organisms from the rhizosphere of plants in Hastings soil concentrated up to 55 ppm of molybdenum dry weight when grown in a liquid medium made from Hastings soil extract and supplemented with carbon, phosphorus, nitrogen, sulphur and molybdenum. The growth from an inoculum of pooled fungal isolates from the rhizosphere has been shown to contain a higher concentration of molybdenum than growth from pooled bacterial or streptomycete isolates. The growth from a combined bacterial and streptomycete inoculum contained a higher concentration of molybdenum than the growth from either group alone.Organisms from the rhizosphere and soil sampled away from the roots of radishes grown in Napier soil did not contain such high concentrations of molybdenum.No significant differences in the frequency of morphological types were found in the isolates from either soil.  相似文献   

8.
The present investigation was undertaken in order to select the surface-sterilization technique most efficient for eliminating epiphytes, to document the spectrum of endophytes of healthy leaves from three wheat cultivars in Buenos Aires Province (Argentina) and to determine their infection frequencies at three growth stages. Surface-sterilization with undiluted commercial solution of sodium hypochlorite was reaffirmed as adequate for removing epiphytes on wheat leaves. From the 450 wheat leaf segments incubated, three bacterial isolates and 130 fungal isolates were obtained. From all the isolates, 19 fungal species were identified. Bacterial isolates were characterized as Bacillus sp. There were significant differences between microorganisms, stages of growth, and stages × microorganisms interaction. Differences between cultivars, stages × cultivars, microorganisms × cultivars and for the triple interaction were not significant. Frequency of microorganisms isolated increased with crop age, but it was statistically similar for the three wheat cultivars tested (Klein Centauro, Klein Dragón and Buck Ombú). Rhodotorula rubra, Alternaria alternata, Cladosporium herbarum and Epicoccum nigrum were isolated in the highest frequency. The other microorganisms were present at intermediate or low values. The species isolated may be assigned to three groups: (a) well-known and economically important pathogens of wheat, (b) commonly abundant phylloplane fungi considered to be primary saprobic and minor pathogens and (c) species occasionally present in wheat.  相似文献   

9.
Li CQ  Liu WC  Zhu P  Yang JL  Cheng KD 《Microbial ecology》2011,62(4):800-812
Several molecular techniques were employed to document the bacterial diversity associated with the marine sponge Gelliodes carnosa. Cultivation-dependent and cultivation-independent methods were used to obtain the 16S rRNA gene sequences of the bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the bacterial community structure was highly diverse with representatives of the high G + C Gram-positive bacteria, cyanobacteria, low G + C Gram-positive bacteria, and proteobacteria (α-, β-, and γ-), most of which were also found in other marine environments, including in association with other sponges. Overall, 300 bacterial isolates were cultivated, and a total of 62 operational taxonomic units (OTUs) were identified from these isolates by restriction fragment length polymorphism (RFLP) analysis and DNA sequencing of the 16S rRNA genes. Approximately 1,000 16S rRNA gene clones were obtained by the cultivation-independent method. A total of 310 clones were randomly selected for RFLP analysis, from which 33 OTUs were acquired by further DNA sequencing and chimera checking. A total of 12 cultured OTUs (19.4% of the total cultured OTUs) and 13 uncultured OTUs (39.4% of the total uncultured OTUs) had low sequence identity (≤97%) with their closest matches in GenBank and were probably new species. Our data provide strong evidence for the presence of a diverse variety of unidentified bacteria in the marine sponge G. carnosa. A relatively high proportion of the isolates exhibited antimicrobial activity, and the deferred antagonism assay showed that over half of the active isolates exhibited a much stronger bioactivity when grown on medium containing seawater. In addition to demonstrating that the sponge-associated bacteria could be a rich source of new biologically active natural products, the results may have ecological implications. This study expands our knowledge of the diversity of sponge-associated bacteria and contributes to the growing database of the bacterial communities within sponges.  相似文献   

10.
Isolation of microorganisms, screening for desirable characters and selection of efficient strains are important steps to optimize high crop yields and improve the sustainability of the ecosystem. The objective of this study was isolate and identify Azopirillum spp. with enhanced potential to promote plant growth among the natural bacterial population associated with rhizosphere soil, roots and stem of maize collected from five maize-growing regions within the southern state of Rio Grande do Sul in Brazil. Diazotrophic microorganisms were isolated using semi-solid N-free and solid selective media NFb. In order to select the most efficient isolates as candidates for plant growth promotion, the purified bacterial strains were studied for cell morphology, and Gram staining, streptomycin resistance, as well as screened for their potential for nitrogen fixation and auxin production under sterile conditions. Among 224 isolates obtained 121 were able to fix nitrogen and produce auxin. The 30 most promising isolates produced indole-3-acetic acid (IAA) ranging in concentration from 3.51 μg to 246.69 μg IAA mg−1. Nitrogen fixation ranged from 15.43 μg to 95.21 μg of N mg protein−1 day−1 From the 30 most productive isolates, chromosomal DNA was extracted and a portion of the nifH gene was amplified and sequenced. Twenty-nine isolates were found to be similar to the Azospirillum genus and one isolate was found to be similar to Herbaspirillum seropedicae. These bacterial isolates revealed potential to increase crop productivity, however field crop experiments in Rio Grande do Sul climatic conditions should be done in order to formulate recommendations for their use as inoculants.  相似文献   

11.
Marine environment habitats, such as the coral mucus layer, are abundant in nutrients and rich with diverse populations of microorganisms. Since interactions among microorganisms found in coral mucus can be either mutualistic or competitive, understanding quorum sensing-based acyl homoserine lactone (AHL) language may shed light on the interaction between coral-associated microbial communities in the native host. More than 100 bacterial isolates obtained from different coral species were screened for their ability to produce AHL. When screening the isolated coral bacteria for AHL induction activity using the reporter strains Escherichia coli K802NR-pSB1075 and Agrobacterium tumefaciens KYC55, we found that approximately 30% of the isolates tested positive. Thin layer chromatography separation of supernatant extracts revealed different AHL profiles, with detection of at least one active compound in the supernatant of those bacterial extracts being able to induce AHL activity in the two different bioreporter strains. The active extract of bacterial isolate 3AT 1-10-4 was subjected to further analysis by preparative thin layer chromatography and liquid chromatography tandem mass spectrometry. One of the compounds was found to correspond with N-(3-hydroxydecanoyl)-l-homoserine lactone. 16S rRNA gene sequencing of the isolates with positive AHL activity affiliated them with the Vibrio genus. Understanding the ecological role of AHL in the coral environment and its regulatory circuits in the coral holobiont-associated microbial community will further expand our knowledge of such interactions.  相似文献   

12.
Endophytic bacteria represent microorganisms that live during the whole life cycle within the tissues of healthy plants without causing any obvious signs of disease. In this study, the ability of 128 endophyte bacterial isolates from some cultivated and wild grain plants (Poaceae family) in Van, Turkey, were investigated in terms of producing several extracellular hydrolytic enzymes. It was demonstrated that lipases, proteases, amylases, cellulases, pectinases, and xylanases were produced by the bacteria with relative frequencies of 74.2%, 65.6%, 55.4%, 32%, 21.8%, and 7.8%, respectively. In addition, molecular identification of a certain number of isolates selected according to their enzyme-producing capabilities was performed by 16S rRNA gene sequencing using a next-generation sequencing platform. As a result of the analysis, the isolates yielded certain strains belonging to Pseudomonas, Micrococcus, Paenibacillus, Streptococcus, Curtobacterium, Chryseobacterium, and Bacillus genera. Also, the strain G117Y1T was evaluated as a member of potential novel species based on 16S rRNA sequencing results.  相似文献   

13.
Eleven bacterial strains were isolated from soil samples collected from mine tailings. Bacterial strains were checked for tolerance against heavy metals (Cr, Cd, Ni), using the agar dilution method. All the strains showed multiple tolerances against heavy metals, but the most promising results appeared in strains BCr3, BCd33, and BNi11: they were tolerant to 15 mM of Cr6+, 7.5 mM of Cd2+, and 10 mM of Ni2+, respectively. The effect of heavy metals on bacterial growth was tested together with their ability to grow in different pH, NaCl, and temperature values. Bacterial isolates grew well between pH 7.5 and 8.5. The optimum temperature for maximum growth was between 35 and 37°C, and no significant change in bacterial growth was observed in the presence of 2% NaCl. In addition, the bioaccumulation potential of bacterial strains was investigated. Bacterial strains BCr3, BCd33, and BNi11 showed high bioaccumulation ability of Cr (68.7%), Cd (72.4%), and Ni (69.8%), respectively. All bacterial isolates were identified by 16S rRNA gene sequencing. Analysis of plasmid content revealed that all bacterial isolates contained a single plasmid. Further, polymerase chain reaction together with DNA sequence analysis was used to screen all bacterial strains for the presence metal tolerance genes (czcD, chrA, chrB, czcB, czcC, nccA, and cadA) on both plasmid and chromosomal genomes.  相似文献   

14.
Aerobic, alkaliphilic to alkalitolerant and mesophilic bacteria were isolated and characterized from soil and sediment samples collected from Bigeum Island, South Korea. The total numbers of microorganisms in the soil and sediment samples were found to be 103–105 cfu/g and 102–107 cfu/g, respectively. A total of 163 isolates were isolated and subjected to further characterization on the basis of pH, temperature and salt tolerance. Among the 163 isolates, 54 were selected based on their tolerance attributes to temperature, pH and NaCl. Out of the 54 isolates, 27 were further selected based on their multiple tolerance ability and enzyme profile and were subjected to 16S rRNA gene sequencing and phylogenetic analysis. The latter indicated that most of the Bigeum Island isolates were related to the phylum Actinobacteria. The phylogenetic tree based on 16S rRNA gene sequences placed the 27 isolates into 9 different major bacterial genera, each genus comprising pure cultures that shared ≤97% sequence identity and 18 putative novel species. Most of the strains were alkalitolerant and mesophilic, and produced biotechnologically important enzymes at alkaline pH.  相似文献   

15.
The goal of this study is to identify and characterize the cellulose degrading microorganisms in the larval gut of the white grub beetle, Lepidiota mansueta. Thirty bacterial strains were isolated and tested for cellulolytic activity using soluble carboxymethyl cellulose (CMC) degrading assays. Of these strains, five (FGB1, FB2, MB1, MB2, and HB1) degrade cellulose. Cellulolytic activity was determined based on formation of clear zone and cellulolytic index on CMC plate media. The highest cellulolytic index (2.14) was found in FGB1. Partial 16S rDNA sequencing, morphological, and biochemical tests were used to identify and characterize the five isolates, all Citrobacter sp. (Enterobacteriaceae). This study identifies new cellulose degrading microorganisms from the larval gut of L. mansueta. The significance of identifying these strains lies in possible application in cellulose degradation.  相似文献   

16.
Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA) with culture-dependent (isolation using seven different growth media) techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.  相似文献   

17.
The green marine macroalga, Ulva linza, adopts an “atypical” form when grown in the absence of bacteria. Twenty unique strains of periphytic bacteria, isolated from three species of Ulva, were identified by 16S rDNA sequencing. These isolates were assessed for their effect on the growth and morphological development of axenic plantlets of U. linza. Results showed that the effect of bacterial strains was strain- but not taxon-specific. Thirteen isolates returned the aberrant morphology to normal and of these, five also significantly increased growth rate. One isolate increased growth, but had no effect on morphology. Biofilms of some of these isolates stimulated the settlement of Ulva zoospores but there was no correlation between bacterial isolates that stimulated zoospore settlement and those that initiated changes in morphology and/or growth of the cultured alga.  相似文献   

18.
Metagenomic profiling: microarray analysis of an environmental genomic library   总被引:11,自引:0,他引:11  
Genomic libraries derived from environmental DNA (metagenomic libraries) are useful for characterizing uncultured microorganisms. However, conventional library-screening techniques permit characterization of relatively few environmental clones. Here we describe a novel approach for characterization of a metagenomic library by hybridizing the library with DNA from a set of groundwater isolates, reference strains, and communities. A cosmid library derived from a microcosm of groundwater microorganisms was used to construct a microarray (COSMO) containing approximately 1-kb PCR products amplified from the inserts of 672 cosmids plus a set of 16S ribosomal DNA controls. COSMO was hybridized with Cy5-labeled genomic DNA from each bacterial strain, and the results were compared with the results for a common Cy3-labeled reference DNA sample consisting of a composite of genomic DNA from multiple species. The accuracy of the results was confirmed by the preferential hybridization of each strain to its corresponding rDNA probe. Cosmid clones were identified that hybridized specifically to each of 10 microcosm isolates, and other clones produced positive results with multiple related species, which is indicative of conserved genes. Many clones did not hybridize to any microcosm isolate; however, some of these clones hybridized to community genomic DNA, suggesting that they were derived from microbes that we failed to isolate in pure culture. Based on identification of genes by end sequencing of 17 such clones, DNA could be assigned to functions that have potential ecological importance, including hydrogen oxidation, nitrate reduction, and transposition. Metagenomic profiling offers an effective approach for rapidly characterizing many clones and identifying the clones corresponding to unidentified species of microorganisms.  相似文献   

19.
Genomic libraries derived from environmental DNA (metagenomic libraries) are useful for characterizing uncultured microorganisms. However, conventional library-screening techniques permit characterization of relatively few environmental clones. Here we describe a novel approach for characterization of a metagenomic library by hybridizing the library with DNA from a set of groundwater isolates, reference strains, and communities. A cosmid library derived from a microcosm of groundwater microorganisms was used to construct a microarray (COSMO) containing ~1-kb PCR products amplified from the inserts of 672 cosmids plus a set of 16S ribosomal DNA controls. COSMO was hybridized with Cy5-labeled genomic DNA from each bacterial strain, and the results were compared with the results for a common Cy3-labeled reference DNA sample consisting of a composite of genomic DNA from multiple species. The accuracy of the results was confirmed by the preferential hybridization of each strain to its corresponding rDNA probe. Cosmid clones were identified that hybridized specifically to each of 10 microcosm isolates, and other clones produced positive results with multiple related species, which is indicative of conserved genes. Many clones did not hybridize to any microcosm isolate; however, some of these clones hybridized to community genomic DNA, suggesting that they were derived from microbes that we failed to isolate in pure culture. Based on identification of genes by end sequencing of 17 such clones, DNA could be assigned to functions that have potential ecological importance, including hydrogen oxidation, nitrate reduction, and transposition. Metagenomic profiling offers an effective approach for rapidly characterizing many clones and identifying the clones corresponding to unidentified species of microorganisms.  相似文献   

20.
We show for the first time that the ventral diverticulum of the mosquito gut (impermeable sugar storage organ) harbors microorganisms. The gut diverticulum from newly emerged and non-fed Aedes aegypti was dissected under aseptic conditions, homogenized and plated on BHI medium. Microbial isolates were identified by sequencing of 16S rDNA for bacteria and 28S rDNA for yeast. A direct DNA extraction from Ae. aegypti gut diverticulum was also performed. The bacterial isolates were: Bacillus sp., Bacillus subtilis and Serratia sp. The latter was the predominant bacteria found in our isolations. The yeast species identified was Pichia caribbica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号