首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pentachlorophenol(PCP)-degrading Pseudomonas sp. strain UG30 was encapsulated in κ-carrageenan for use in PCP degradation. Free and encapsulated cells were compared for their ability to dechlorinate and mineralize 100–800 μg/ml sodium pentachlorophenate in broth. Dechlorination was measured with a chloride ion electrode, and mineralization was measured by 14CO2 evolution from radiolabelled [U-14C]PCP. Free and encapsulated Pseudomonas sp. UG30 cells mineralized up to 200 μg/ml and 600 μg/ml PCP, respectively, after 21 days. Encapsulation of UG30 cells provided a protective effect, allowing dechlorination and mineralization of high levels of PCP to occur. Received: 3 May 1996 / Received revision: 4 September 1996 / Accepted: 13 September 1996  相似文献   

2.
The effect of zinc on various pulmonary cell lines has been studied by measuring the depletion of total cellular glutathione after exposure to zinc(II) chloride at different concentrations. Total cellular glutathione (cGS) was measured at 31 ± 3 nmol/mg, 3.8 ± 0.6 nmol/mg, and 3.7 ±1.2 nmol/mg protein in A549, L2, and 11Lu cells, respectively. After treatment with buthionine sulfoximine (BSO), the cGS levels decreased by 20% in A549 cells and below 0.2 nmol/mg in L2 and 11Lu cells. Exposure of A549 cells to 25–200 μM ZnCl2 for 4 h alone decreased the cGS content to 60–80%. There was little additional effect in BSO-pretreated cells. In L2 and 11Lu cells, the decrease of cGS was 70–85% following exposure to 15–150 μM ZnCl2 for 2 h. If BSO was also used, the decrease in cGS was 85–95% in L2 cells and 75–85% in 11Lu cells. Exposure to 25–250 μM ZnCl2 for 2 h diminished protein synthesis as determined by radiolabeled methionine incorporation, with half-maximum inhibition (EC50) from 40–160 μM ZnCl2. To attain similar EC50 values in BSO-pretreated cells, only about half the zinc concentrations were required as compared to cells without pretreatment. The decrease of cGS was accompanied by an increased ratio of oxidized : reduced glutathione that was more pronounced in cells with low glutathione content.  相似文献   

3.
Symbiotic dinoflagellates of the species Amphidinium are expected to be pharmaceutically useful microalgae because they produce antitumor macrolides. A microalgae production system with a large number of cells at a high density has been developed for the efficient production of macrolide compounds. In the present study, the effects of culture conditions on the cellular growth rate of dinoflagellates were investigated to determine the optimum culture conditions for obtaining high yields of microalgae. Amphidinium species was cultured under conditions with six temperature levels (21–35°C), six levels of photosynthetic photon flux density (15–70 μmol photons m−2 s−1), three levels of CO2 concentration (0.02–0.1%), and three levels of O2 concentration (0.2–21%). The number of cells cultured in a certain volume of solution was monitored microscopically and the cellular growth rate was expressed as the specific growth rate. The maximum specific growth rate was 0.022 h−1 at a temperature of 26°C and O2 concentration of 5%, and the specific growth rate was saturated at a CO2 concentration of 0.05%, a photosynthetic photon flux density of 35 μmol photons m−2 s−1 and a photoperiod of 12 h day−1 upon increasing each environmental parameter. The results demonstrate that Amphidinium species can multiply efficiently under conditions of relatively low light intensity and low O2 concentration.  相似文献   

4.
This paper reports on the optimum concentrations of naphthalene acetic acid (NAA) and 6-benzyladenine (BA) to stimulate callus growth and NAA; kinetin and silver nitrate (AgNO3) for callus redifferentiation in Dianthus caryophyllus L. Meristems were excised and placed in MS medium with 30 g l−1 sucrose and 9.0 μM 2,4-d. Callus clusters were transferred to MS medium containing NAA (0, 1.7, 3.3, and 5.0 μM) and BA (0, 1.7, 3.3, and 5.0 μM) for proliferation and to MS medium with 30 g l−1 sucrose, 2.5 g l−1 phytagel, kinetin (0, 33, and 66 μM); NAA (0, 7.95, and 15.9 μM) and AgNO3 (0, 23.54 and 47.08 μM) for shoot and root induction. Treatments were applied according to a Box–Behnken design. After callus growth and redifferentiation, plants were incubated in the greenhouse at 18 ± 2°C for 4 wk and at 20–26°C for 4 wk. Finally, plants were changed to near-commercial greenhouse conditions with different day (30–35°C) and night (16–24°C) temperatures. Results showed better callus growth at higher NAA concentrations. A maximum callus weight was found with 5.0 μM NAA but without BA. A maximum of 78% calluses with shoots was obtained with 15.9 μM NAA, 47.08 μM AgNO3, and 0.74 μM kinetin and 58% with roots with 15.7 μM NAA and 47.08 μM AgNO3, but without kinetin. The shoots obtained showed little hyperhydricity. Vigorous plants were obtained after gradual acclimatization with an 80% survival rate under nursery conditions.  相似文献   

5.
Because angiogenesis plays a major role in the perpetuation of inflammatory arthritis, we explored a method for selectively targeting and destroying new synovial blood vessels. Mice with collagen-induced arthritis were injected intravenously with phage expressing an RGD motif. In addition, the RGD peptide (RGD-4C) was covalently linked to a proapoptotic heptapeptide dimer, D(KLAKLAK)2, and was systemically administered to mice with collagen-induced arthritis. A phage displaying an RGD-containing cyclic peptide (RGD-4C) that binds selectively to the αvβ3 and αvβ5 integrins accumulated in inflamed synovium but not in normal synovium. Homing of RGD-4C phage to inflamed synovium was inhibited by co-administration of soluble RGD-4C. Intravenous injections of the RGD-4C–D(KLAKLAK)2 chimeric peptide significantly decreased clinical arthritis and increased apoptosis of synovial blood vessels, whereas treatment with vehicle or uncoupled mixture of the RGD-4C and the untargeted proapoptotic peptide had no effect. Targeted apoptosis of synovial neovasculature can induce apoptosis and suppress clinical arthritis. This form of therapy has potential utility in the treatment of inflammatory arthritis.  相似文献   

6.
Direct electron transfer of hemoglobin modified with quantum dots (QDs) (CdS) has been performed at a normal graphite electrode. The response current is linearly dependent on the scan rate, indicating the direct electrochemistry of hemoglobin in that case is a surface-controlled electrode process. UV–vis spectra suggest that the conformation of hemoglobin modified with CdS is little different from that of hemoglobin alone, and the conformation changes reversibly in the pH range 3.0–10.0. The hemoglobin in a QD film can retain its bioactivity and the modified electrode can work as a hydrogen peroxide biosensor because of its peroxidase-like activity. This biosensor shows an excellent response to the reduction of H2O2 without the aid of an electron mediator. The catalytic current shows a linear dependence on the concentration of H2O2 in the range 5 × 10−7–3 × 10−4 M with a detection limit of 6 × 10−8 M. The response shows Michaelis–Menten behavior at higher H2O2 concentrations and the apparent Michaelis–Menten constant is estimated to be 112 μM.  相似文献   

7.
Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was non-motile and rod-shaped with blunted ends (0.5–1 μm × 3–4 μm long). Doubling times with acetate at 30–35°C were 5.6–8.1 days. The methanogen grew only on acetate. Analysis of the 16S rRNA sequence showed that AMPB-Zg is closely related toMethanosaeta concilii. The isolated sulfate-reducing bacterium (strain ASRB-Zg) was rod-shaped with pointed ends (0.5–0.7 μm × 1.5–3.5 μm long), weakly motile, spore forming, and gram positive. At the optimum growth temperature of 30°C the doubling times with acetate were 3.9–5.3 days. The bacterium grew on a range of organic acids, such as acetate, butyrate, fumarate, and benzoate, but did not grow autotrophically with H2, CO2, and sulfate. The closest relative of strain ASRB-Zg isDesulfotomaculum acetoxidans. The nitrate-reducing bacterium (strain ANRB-Zg) was rod-shaped (0.5–0.7 μm × 0.7–1 μm long), weakly motile, and gram negative. Optimum growth with acetate occurred at 20–25°C. The bacterium grew on a range of organic substrates, such as acetate, butyrate, lactate, and glucose, and did grow autotrophically with H2, CO2, and oxygen but not with nitrate. In the presence of acetate and nitrate, thiosulfate was oxidized to sulfate. Phylogenetically, the closest relative of strain ANRB-Zg isVariovorax paradoxus.  相似文献   

8.
A transect of ten profiles was laid out in 20 m intervals on a tidal sand flat approximately 100 m from the east shore of Sylt until the next tideway was reached. Sediment samples were taken from 0–2 cm depth (oxic layer) and 2–4 cm depth (anoxic layer). The average content of organic carbon (C) was 2.41 mg g−1 in the oxic layer and 1.86 mg g−1 in the anoxic layer. The organic C content correlated positively with non-biomass C, 0.5M K2SO4 extractable C, total nitrogen (N), cation exchange capacity (CEC), and the textural classes <200 μm, and negatively correlated with the coarse sand fraction. The average total C:N ratio was 7.0 in the oxic layer and 6.7 in the anoxic layer, indicating that the C input comes entirely from the microflora. CHCl3-labile C was measured by the fumigation-extraction method and was converted to microbial biomass C (values in brackets). The average content of CHCl3-labile C was 407 μg g−1 (903 μg g−1) in the oxic layer and 214 μg g−1 (476 μg g−1) in the anoxic layer. CHCl3-labile C did not correlate with CEC and the textural classes <200 μm, indicating that conditions other than the physical environment determine this fraction (C input, grazing).  相似文献   

9.
Responses of mycelia ofGanoderma lucidum to vanadium, selenium and germanium were examined over a wide range of concentrations (10–1, 120 μg/ml) in pure culture. Se and V were found to be highly toxic, but Ge was not toxic at the levels tested.Ganododerma lucidum cultivated on substrates of sawdust with V (30–80 μg/g) developed mature fruitbodies, but the bioaccumulation of V was quite low (2.5–7 μg/g in pileus, 12.5–21.5 μg/g in stipe and <1 μg/g in basidiospores). Se as Na2SeO4 labeled with75Se was effectively taken up from substrates and accumulated in fruitbodies (mainly in pileus), then depleted by discharge of basidiospores. Ge as GeCl4 labeled with77Ge was easily uptaken and translocated into fruitbodies.  相似文献   

10.
Song JH  Sun DX  Chen B  Ji DH  Pu J  Xu J  Tian FD  Guo L 《Journal of biosciences》2011,36(5):879-885
Podophyllotoxin (PPT) and its derivatives exert significant anti-cancer activities, and one derivative etoposide is often utilized to treat various cancers in the clinic. The aim of the present study is to investigate the inhibitory effects of PPT on major cytochrome P450 (CYP) isoforms in human livers. Inhibition of CYP3A4, CYP2C9, CYP2C8, CYP2D6, CYP2E1 and CYP2A6 by PPT was investigated in the human liver microsomal system. Time-dependent inhibition of CYP3A4 by PPT was also evaluated. The results showed that PPT strongly exhibited inhibitory effects on CYP3A4 and CYP2C9 in a concentration-dependent manner. Half inhibition concentration (IC50) was 1.1 ± 0.3 and 4.6 ± 0.3 μM for CYP3A4 and CYP2C9, respectively. Inhibition kinetic analysis showed that PPT exhibited competitive inhibition towards CYP3A4 and CYP2C9 with Ki of 1.6 and 2.0 μM, respectively. Additionally, PPT exerted time-dependent inhibition towards CYP3A4 and the kinetic parameters were 4.4 ± 2.1 μM and 0.06 ± 0.01 min–1 for KI and kinact, respectively. Our experimental data indicate that potential drug–drug interaction (DDI) might exist when PPT is co-administered with the substrates which mainly undergo CYP3A4- or CYP2C9-mediated metabolism.  相似文献   

11.
Cocconeis scutellum var.ornata Grun. from three localities of Japan was studied. The striation density in 10 μm showed a marked tendency to increase with the decrease of the valve length in both raphe and rapheless valves, and this tendency did not vary with locality or environmental condition. The striation densities of rapheless valves were 4–6 in 10 μm for a valve length of 40μm, 4–6.5 for 30 μm, 6–9 for 20μm and 6.5–11 for 15μm. Those of raphe valves were 10–11 in 10μm for a valve length of 40μm, 10–12 for 30μm, 11–14.5 for 20μm and 12.5–17 for 15μm. According to the range of changing value in striation density obtained by the present study,C. scutellum var.schmidti Frenguelli andC. japonica Schmidt are identical withC. scutellum var.ornata. Dedicated to Prof. Munenao Kurogi on the occasion of his academic retirement. Culture experiment in the present study was undertaken at the Institute of Algological Research, Faculty of Science, Hokkaido University at Muroran.  相似文献   

12.
A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.  相似文献   

13.
The aim of this study was to evaluate DNA damage and the capacity for DNA repair in children exposed to arsenic and lead. During 2006, we studied a total of 85 healthy children (aged 4–11 years) who were residents of Villa de la Paz (community A), Matehuala (community B), and Soledad de Graciano Sanchez (community C) in San Luis Potosi, Mexico. The quantification of arsenic in urine (AsU) and lead in blood (PbB) was performed by atomic absorption spectrophotometry. The alkaline comet assay was used to evaluate DNA damage and DNA repair. The highest levels of AsU and PbB in children were found in community A (44.5 μg/g creatinine for arsenic and 11.4 μg/dL for lead), followed by community B (16.8 μg/g creatinine for arsenic and 7.3 μg/dL for lead) and finally by children living in community C (12.8 μg/g creatinine for arsenic and 5.3 μg/dL for lead). When DNA damage was assessed, children living in community A had the highest DNA damage. Analysis of these same cells 1 h after a challenge with H2O2 10 μM showed a dramatic increase in DNA damage in the cells of children living in community B and community C, but not in the cells of children living in community A. Moreover, significantly higher levels of DNA damage were observed 3 h after the challenge ended (repair period) in cells from individuals living in community A. Our results show that children exposed to metals might be more susceptible to DNA alterations.  相似文献   

14.
We compared the effects of four quaternary benzo[c]phenanthridine alkaloids – chelerythrine, chelilutine, sanguinarine, and sanguilutine – and two quaternary protoberberine alkaloids – berberine and coptisine – on the human cell line HeLa (cervix carcinoma cells) and the yeastsSaccharomyces cerevisiae andSchizosaccharomyces japonicus var. versatilis. The ability of alkaloids to display primary fluorescence, allowed us to record their dynamics and localization in cells. Cytotoxic, anti-microtubular, and anti-actin effects in living cells were studied. In the yeasts, neither microtubules nor cell growth was seriously affected even at the alkaloid concentration of 100 μg/ml. The HeLa cells, however, responded to the toxic effect of alkaloids at concentrations ranging from 1 to 50 μg/ml. IC50 values for individual alkaloids were: sanguinarine IC50 = 0.8 μg/ml, sanguilutine IC50 = 8.3 μg/ml, chelerythrine IC50 = 6.2 μg/ml, chelilutine IC50 = 5.2 μg/ml, coptisine IC50 = 2.6 μg/ml and berberine IC50 >10.0 μg/ml. In living cells, sanguinarine produced a decrease in microtubule numbers, particularly at the cell periphery, at a concentration of 0.1 μg/ml. The other alkaloids showed a similar effect but at higher concentrations (5–50 μg/ml). The strongest effects of sanguinarine were explained as a consequence of its easy penetration through the cell membrane owing to nonpolar pseudobase formation and to a high degree of molecular planarity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The cyclic peptide, cRGDf[N(me)]V, binds to the α v β 3 integrin and can disrupt binding of the integrin to its natural ligands in the extracellular matrix. In this work, the ability of a water-soluble, fluorescently labeled variant of the RGD-containing peptide (cRGDfK-488) to bind to integrins on human umbilical vascular endothelial cells (HUVEC) and subsequently undergo endocytosis was characterized. This information was compared to the binding and uptake properties of an α v β 3 integrin-specific monoclonal antibody, LM609X. The specificity of the RGD-containing peptide is assessed by comparison with control peptide that does not bind to the α v β 3 integrin, cRADfK-488. Using a high purity construct, it is shown that the RGD ligand exhibits dissociation constants in the micromolar range whereas LM609X exhibits dissociation constants in the nanomolar range. However, the RGD ligand showed greater uptake following incubation at temperatures which permit endocytosis. A 7.4-fold increase in uptake of the RGD peptide was observed following a 1 h incubation with HUVEC at 37°C (an endocytosis permissive temperature), as compared to that at 4°C (an endocytosis prohibitive temperature). In contrast, only a 1.9-fold increase in cell-associated fluorescence was observed for similar incubations with LM609X. Results from fluorescence microscopy supports the notion that the RGD peptide is rapidly endocytosed at 37°C as compared to LM609X. These results are discussed with regard to previous work indicating that RGD ligands enter cells by integrin-independent pathways. These studies provide well-controlled measures of how RGD ligands stimulate endocytosis. This may be of considerable interest for intracellular delivery of ligand-associated drugs in anti-angiogenic applications.  相似文献   

16.
In vitro and in vivo studies have proven strontium to be an osteoinductive trace element. The effect of strontium ranelate (SR) on H2O2-induced apoptosis of CRL-11372 cells and optimization of its anti-apoptotic dose were the aims of this study. After 1 h of pretreatment with SR 1 μM, 50 μM, 100 μM, 500 μM, and 1,000 μM concentrations, CRL-11372 osteoblasts were exposed to 100 μM H2O2 for periods of 6–12 h. The same experiments were repeated without H2O2. The apoptotic index and viability of cells were assessed quantitatively with a fluorescent dye and qualitatively with agarose gel electrophoresis. Concentrations of 1–100 μM of SR with a 6-h treatment and only 1 μM concentration with a 12-h treatment inhibited the apoptotic effect of H2O2 on cultured osteoblasts significantly (P < 0.05). SR was shown to inhibit H2O2-induced apoptosis of CRL-11372 cells in a dose-dependent manner.  相似文献   

17.
The effects of increase copper concentrations in medium (10–150 μM CuSO4) on growth and viability of the roots of two-week-old soybean seedlings (Glycine max L., cv. Dorintsa) were studied. Copper excess suppressed biomass accumulation and linear plant growth; copper affected root growth much stronger than shoot growth. The presence of 10 μM CuSO4 in medium suppressed accumulation of plant biomass by 40% and the root length by 70%; in the presence of 25 μM CuSO4, these indices were equal to 80 and 90%, respectively. In the presence of 50 μM CuSO4, roots ceased to grow but biomass and shoot length still increased slightly. 150 μM CuSO4 was lethal for plants. The earliest sign of excessive copper toxicity was the accumulation of MDA, indicating activation of membrane lipid peroxidation. A significant increase in MDA content was observed at plant incubation in medium with 10 μM CuSO4 for 1 h; in this case, the content of copper in the roots increased from 36 ±1.8 (in control) to 48 ± 2.4 μg/g dry wt. The number of dead cells (permeable for the dye Evans Blue) was doubled in the presence of 200 μg/g dry wt within the root; this occurred in 72 h of growth in medium with 10 μM CuSO4, in 6 h at 25 μM CuSO4, in 3 h at 50 μM CuSO4, and 1 h at 150 μM CuSO4. Toxicity of copper excess was manifested stronger in dividing and elongation cells of the root apex (root meristem and the zone of elongation) than in more basal root regions. Copper excess resulted in the formation of breaks in the surface cell layers of the root tips and affect root morphology. When plant grew in medium with 10 μM CuSO4, a distance of lateral root formation zone from the root tip decreased markedly, and spherical swellings were formed on the tips of lateral roots. The higher copper concentrations (50 and 150 μM) suppressed completely the development of lateral roots.  相似文献   

18.
Candida-associated denture stomatitis has a high rate of recurrence. Candida biofilms formed on denture acrylic are more resistant to antifungals than planktonic yeasts. Histatins, a family of basic peptides secreted by the major salivary glands in humans, especially histatin 5, possess significant antifungal properties. We examined antifungal activities of histatin 5 against planktonic or biofilm Candida albicans and Candida glabrata. Candida biofilms were developed on poly(methyl methacrylate) discs and treated with histatin 5 (0.01–100 μM) or fluconazole (1–200 μM). The metabolic activity of the biofilms was measured by the XTT reduction assay. The fungicidal activity of histatin 5 against planktonic Candida was tested by microdilution plate assay. Biofilm and planktonic C. albicans GDH18, UTR-14 and 6122/06 were highly susceptible to histatin 5, with 50% RMA (concentration of the agent causing 50% reduction in the metabolic activity; biofilm) of 4.6 ± 2.2, 6.9 ± 3.7 and 1.7 ± 1.5 μM, and IC50 (planktonic cells) of 3.0 ± 0.5, 2.6 ± 0.1 and 4.8 ± 0.5, respectively. Biofilms of C. glabrata GDH1407 and 6115/06 were less susceptible to histatin 5, with 50% RMA of 31.2 ± 4.8 and 62.5 ± 0.7 μM, respectively. Planktonic C. glabrata was insensitive to histatin 5 (IC50 > 100 μM). Biofilm-associated Candida was highly resistant to fluconazole in the range 1–200 μM; e.g. at 100 μM only ~20% inhibition was observed for C. albicans, and ~30% inhibition for C. glabrata. These results indicate that histatin 5 exhibits antifungal activity against biofilms of C. albicans and C. glabrata developed on denture acrylic. C. glabrata is significantly less sensitive to histatin 5 than C. albicans.  相似文献   

19.
The dry weight per unit biovolume of 810 single, living cells of the ubiquitous soil algae Klebsormidium flaccidum from 80 experiments were determined using a Mach–Zehnder double-beam interference microscope. Different substrates such as agarized nutrient solution, different soils, and slag heap material, different pH values, temperatures and light intensities were used and cells from both growth and stationary phase were measured. The total possible range of dry weight with respect to carbon per unit biovolume (C/ubv) values was 93–226 fg μm−3. The mean value of all data was 147 fg μm−3, which concurs with the average value as taken from literature data of several planktonic algal species and groups within the respective size range (cell volume 300–1,000 μm3). We could show that C/ubv is suitable to quantify environmental stress conditions: C/ubv values ≤140 fg μm−3 are characteristic of cells grown under optimum conditions, and values ≥160 fg μm−3 reflect quantitatively graded stress situations. We propose integrating the microscope interferometric method using K. flaccidum as a test organism into a soil test system to determine the prevailing environmental conditions.  相似文献   

20.
Here, a highly sensitive electrochemical aptasensor based on a novel signal amplification strategy for the determination of bisphenol A (BPA) was developed. Construction of the aptasensor began with the deposition of highly dispersed platinum nanoparticles (PtNPs)/acid-oxidized carbon nanotubes (CNTs–COOH) functionalized with polyethyleneimine (PEI) at the surface of glassy carbon (PtNPs/PEI/CNTs–COOH/GC) electrode. After immobilizing the amine-capped capture probe (ssDNA1) through the covalent amide bonds formed by the carboxyl groups on the nanotubes and the amino groups on the oligonucleotides, we employed a designed complementary BPA–aptamer (ssDNA2) as a detection probe to hybridize with the ssDNA1. By adding BPA as a target, the aptamer specifically bound to BPA and its end folded into a BPA-binding junction. Because of steric/conformational restrictions caused by aptamer–BPA complex formation at the surface of modified electrode, the interfacial electron transfer of [Fe(CN)6]3−/4− as a probe was blocked. Sensitive quantitative detection of BPA was carried out by monitoring the decrease of differential pulse voltammetric responses of [Fe(CN)6]3−/4− peak current with increasing BPA concentrations. The newly developed aptasensor embraced a number of attractive features such as ease of fabrication, low detection limit, excellent selectivity, good stability and a wide linear range with respect to BPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号