首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A model is proposed for the enzyme production by Trichoderma reesei (QM 9414), which assumes control of the active enzyme transport through the cell membrane as a key parameter for the enzyme activity change in the culture filtrate. In a stirred tank reactor, continuous cultivation of the fungus was carried out in the dilution rate range of D=0.01–0.032 h–1. After changing the dilution rate it took 3–4 weeks to attain a steady state in enzyme activity. Reducing sugars, dissolved protein, enzyme activity (filter-paper and glucosidase activities), cellulose and nitrogen content of the sediment, the elementary analysis of the cell and the composition of the outlet gas were all determined during cultivation. At a dilution rate of D=0.025 h–1 all of these properties change due to derepression (for D<0.025 h–1) or repression (for D>0.025 h–1) of the enzymes which are responsible for the active transport of cellulases from the cell into the medium. The cellulase excretion causes a decrease of the yield coefficient of growth and a reduction of the nitrogen content of the cells.In a two-stage system the time to attain a steady state increases to 4–6 weeks. At low dilution rates the enzyme activity is only slightly higher in the second stage than in the first. At high dilution rates, at which the enzyme is not excreted into the medium in the first stage, enzyme activity can be increased considerably in the second stage.  相似文献   

2.
Trichoderma reesei (QM 9414) produced cellulase in continuous culture, on media containing xylose (1%) supplemented with sorbose (0.3%) to induce cellulase production. Maximum cell mass of 4.54 kg/m(3) occurred at pH 4.0 and a dilution rate of 0.0391 h(-1) where residual substrate was 0.43 kg/m(3), but no cellulase was produced. Maximum cellulase production of 0.69 FPU occurred at pH 3.5 and a dilution rate of 0.0110 h(-1), where cell mass production was 2.56 kg/m(3) and residual substrate was 0.15 kg/m(3). Monod kinetic constants, corrected for endogenous metabolism, were 0.091 h(-1), 0.469 kg/m(3), 0.00923 h(-1), and 0.470 kg cells/kg xylose at pH 3.5, for the maximum specific growth rate, Michaelis-Menten coefficient, endogenous metabolism coefficient, and yield coefficient, respectively. Specific growth rate fitted a maturation time model, which predicted decreasing maturation time with increasing pH.  相似文献   

3.
The ability of L-sorbose to stimulate cellulase production In shake flask culture of Trichoderma reesei was examined in mineral salts media (initial pH 5.0) containing either 1.0% D-xylose, 1.0% cellulose, and/or 0.1, 0.3, or 0.5% L-sorbose. When sorbose was the only carbon source, growth was limited, little substrate was utilized, pH increased, and cellulase activity was not apparent. The other carbon sources promoted good growth, pH dropped sharply to 2.5-3.0, substrate was utilized rapidly, and cellulase activity was detected. After three weeks of fermentation, twice as much cellulase activity was detected in the medium containing only cellulose as the carbon source, as compared to xylose as the carbon source. Cellulase activity was higher when media contained xylose supplemented with sorbose compared to xylose as the only carbon source. At 0.3 and 0.5% levels of sorbose supplementation of xylose-based media, cellulase activity was similar to that in cellulose-based media.  相似文献   

4.
Summary When grown on cellulose or xylan, Trichoderma reesei (strain Rut C-30) produced extra-cellular enzymes which could hydrolyze both cellulose and xylan to their respective monosaccharides. At low O2 saturation, -glucosidase activity is greatly reduced for cellulose-grown but not xylan-grown cells.  相似文献   

5.
以蔗渣为原料,采用碱和微波辐射联合处理后用于里氏木霉纤维素酶的液态发酵。采用单因素试验与正交试验确定了最佳的处理条件为:0.30 mol/L的NaOH溶液浸泡,微波功率160 W,处理5 min。在此条件下得到的单位能耗的酶活净增值最高。后续发酵结束后,酶活较未经处理的蔗渣发酵后所得酶活有显著提高。其中,β-葡萄糖苷酶活、滤纸酶(FPase)活、羧甲基纤维素酶(CMCase)活分别提高了81.3%,88.2%,154.5%。  相似文献   

6.
Protoplasts from Trichoderma reesei were immobilized in alginate and induced to produce cellulase (endoglucanase and β-glucosidase) enzymes. The specific activities of the synthesized enzymes were higher in immobilized protoplasts than in both free and immobilized mycelia. Immobilized protoplasts show an enhanced rate of exocellular β-glucosidase production compared to intact mycelia due to the lack of cell wall. The ratio of the exocellular/intracellular β-glucosidase was 5.9 for immobilized protoplasts and 0.32 for free mycelia.  相似文献   

7.
Summary Fed-batch cultures of Trichoderma reesei RUT-C30 attained quasi-steady state conditions, in respect of biomass concentration and enzyme production rate, commensurate with a specific cell maintenance coefficient of 0.029 g cellulose.g biomass.–1h–1 and specific cellulase production rate of between 9.6 and 11.9 IU (filter paper activity).g biomass.–1h–1. A maximum enzyme yield of 57 IU.m1–1 at an overall productivity of 201 IU.L.–1h–1 resulted from a cellulose feed rate of 1.0g.L.–1h–1.  相似文献   

8.
9.
Trichoderma can be cultured in stirred-tank fermentors on high (8%) cellulose concentrations without increasing the salt concentration of the medium when NH4OH is used to control pH and as a nitrogen source. Approximately 90% of the ammonia consumed by the organism can be added as NH4OH. The advantage of using high concentrations of cellulose is that culture filtrates with greater cellulase activity are obtained. The advantage of a low salts medium is that unwanted solutes in the final enzyme preparation are reduced. The appearance of cellulase in the medium occurs later than net ammonia uptake so that only 20% of the final amount of cellulase has appeared when 80% of the maximum amount of ammonia has been consumed.  相似文献   

10.
The addition of positively charged colloidal materials to the growth medium markedly increased the concentration of cellulase enzymes produced by Trichoderma reesei Rut-C30. Filter paper activities of up to 4 and 13 IU/ml have been achieved by the addition of colloidal materials, using 3% lactose and 3% cellulose, respectively, as a substrate. The particles exert their effect by binding soluble sugars and slowing their uptake by the organism.  相似文献   

11.
The development of an agar plate screening technique has allowed the isolation of a range of mutants of Trichoderma reesei capable of synthesizing cellulase under conditions of high catabolite repression. The properties of one of these mutants (NG-14) is described to illustrate the use of this technique. NG-14 produced five times the filter paper-degrading activity per ml of culture medium and twice the specific activity per mg of excreted protein in submerged culture when compared with the best existing mutant, QM9414. NG-14 also showed enhanced endo-beta-glucanase and beta-glucosidase production. Although these mutants were isolated as cellulase producers in the presence of 5% glycerol on agar plates, in similar liquid medium, NG-14 exhibits only partial derepression of the cellulase complex. Since the proportions of filter paper activity, endo-beta-glucanase, and cellobiase were not the same in mutants NG-14 and QM9414, and the yields of each enzyme under conditions repressive for cellulase synthesis were different, differential control of each enzyme of the cellulase complex is implied. These initial results suggest that the selective technique for isolating hyper-cellulase-producing mutants of Trichoderma will be of considerable use in the development of commercially useful cellulolytic strains.  相似文献   

12.
The development of an agar plate screening technique has allowed the isolation of a range of mutants of Trichoderma reesei capable of synthesizing cellulase under conditions of high catabolite repression. The properties of one of these mutants (NG-14) is described to illustrate the use of this technique. NG-14 produced five times the filter paper-degrading activity per ml of culture medium and twice the specific activity per mg of excreted protein in submerged culture when compared with the best existing mutant, QM9414. NG-14 also showed enhanced endo-beta-glucanase and beta-glucosidase production. Although these mutants were isolated as cellulase producers in the presence of 5% glycerol on agar plates, in similar liquid medium, NG-14 exhibits only partial derepression of the cellulase complex. Since the proportions of filter paper activity, endo-beta-glucanase, and cellobiase were not the same in mutants NG-14 and QM9414, and the yields of each enzyme under conditions repressive for cellulase synthesis were different, differential control of each enzyme of the cellulase complex is implied. These initial results suggest that the selective technique for isolating hyper-cellulase-producing mutants of Trichoderma will be of considerable use in the development of commercially useful cellulolytic strains.  相似文献   

13.
Trichoderma reesei endoglucanase I (EGI) was used as a reporter enzyme for screening mutagenized yeast strains for increased ability to produce protein. Sixteen haploid Saccharomyces cerevisiae strains, transformed with a yeast multicopy vector pALK222, containing the EGI cDNA under the ADH1 promoter, produced EGI activity of 10-5–10-4 g/l. On the average 93% of the total activity was secreted into the culture medium. Two strains with opposite mating types were mutagenized, and several mutants were isolated possessing up to 45-fold higher EGI activity. The best mutants were remutagenized and a second-generation mutant, strain 2804, with an additional twofold increase in EGI activity was selected. The mutant strain 2804 grew more slowly and reached a lower final cell density than the parental strain. In the selective minimal medium, the 2804 strain produced 40 mg/l immunoreactive EGI protein, but only 2% was active enzyme. In the rich medium the secreted EGI enzyme stayed active, but without selection pressure the EGI production ceased after 2 days of cultivation, when the strain 2804 had produced 10 mg/l of EGI. A sevenfold difference was found between the parental and the 2804 strain in their total EGI production relative to cell density. The difference in favour of the mutant strain was also detected on the mRNA level. The 2804 mutant was found to be more active than the parental strain also in the production of T. reesei cellulases, cellobiohydrolase I, and cellobiohydrolase II. Received: 22 December 1995/Received revision: 26 February 1996/Accepted: 17 March 1996  相似文献   

14.
Trichoderma reesei VTT-D-86271 (Rut C-30) was cultivatedon media based on cellulose and xylan as the main carbon source in fermentors with different pH minimum controls. Production of xylanase was favoured by a rather high pH minimum control between 6.0 and 7.0 on both cellulose- and xylan-based media. Although xylanase was produced efficiently on cellulose as well as on xylan as the carbon source, significant production of cellulose was observed only on the cellulose-based medium and best production was at lower pH (4.0 minimum). Production of xylanase at pH 7.0 was shown to be dependent on the nature of the xylan in the cultivation medium but was independent of other organic components. Best production of xylanase was observed on insoluble, unsubstituted beech xylan at pH 7.0. Similar results were obtained in laboratory and pilot (200-l) fermentors. Downstream processing of the xylanase-rich, low-cellulose culture filtrate presented no technical problems despite apparent autolysis of the fungus at the high pH. Enzyme produced in the 200-l pilot fermentor was shown to be suitable for use in enzyme-aided bleaching of kraft pulp. Due to the high xylanase/cellulase ratio of enzyme activities in the culture filtrate, pretreatment for removal of cellulase activity prior to pulp bleaching was unnecessary. Correspondence to: M. J. Bailey  相似文献   

15.
Cellulase yields of 250 to 430 IU/g of cellulose were recorded in a new approach to solid-state fermentation of wheat straw with Trichoderma reesei QMY-1. This is an increase of ca. 72% compared with the yields (160 to 250 IU/g of cellulose) in liquid-state fermentation reported in the literature. High cellulase activity (16 to 17 IU/ml) per unit volume of enzyme broth and high yields of cellulases were attributed to the growth of T. reesei on a hemicellulose fraction during its first phase and then on a cellulose fraction of wheat straw during its later phase for cellulase production, as well as to the close contact of hyphae with the substrate in solid-state fermentation. The cellulase system obtained by the solid-state fermentation of wheat straw contained cellulases (17.2 IU/ml), β-glucosidase (21.2 IU/ml), and xylanases (540 IU/ml). This cellulase system was capable of hydrolyzing 78 to 90% of delignified wheat straw (10% concentration) in 96 h, without the addition of complementary enzymes, β-glucosidase, and xylanases.  相似文献   

16.
17.
Enzyme stability studies have been reinvestigated under the conditions used for cellulose hydrolysis (pH 4.8, 50°C, 24 hr). The cellobiohydrolase (CBH) component as measured on Avicel is less stable than other enzymes of the cellulase complex, and is 60% inactivated by merthiolate (and other Hg compounds) under the above conditions. Endo-β-1,4-glucanase is much more stable, and more resistant to merthiolate and other compounds. Under unshaken conditions the Avicelase of the Rutgers strain C 30 shows greater stability to heat than that of other available strains. Biocides must be selected not only for their ability to prevent contamination, but also for their compatibility with cellulases. Tetracycline and chlortetracycline are inexpensive, effective in very low concentrations, have no harmful effect on the enzymes, and are compatible with the yeasts that subsequently grow on the sugar solutions to produce alcohol. Attempts have been made to stabilize the enzymes by chemical modification in such a way as to maintain their solubility. Glutaraldehyde treatment greatly increased the enzyme size, lowered the pI values, and gave a slight shift in the pH activity curve. There was, unfortunately, no increase in enzyme stability, and the activity of enzymes on solid celluloses was adversely affected. Shaking greatly reduced the hydrolysis of Avicel by Trichoderma reesei C 30 enzyme. The adverse effect was accompanied by a decrease in recoverable enzyme and protein.  相似文献   

18.
里氏木霉液体发酵产纤维素酶的研究   总被引:11,自引:0,他引:11  
在摇瓶试验基础上,采用里氏木霉(Trichoderma reesei)HC-415菌株进行5L自控罐产纤维素酶深层发酵试验。在通气量为 0.2—0.6vvm、搅拌速度为 400r/min、发酵液pH控制在5.8—6.1的条件下,发酵液的羧甲基纤维素(CMC)酶酶活最高为325.0mg糖/ml,滤纸糖酶(FPA)酶活最高达17.9mg糖/ml。发酵周期为108h。所得冻干纤维素酶粉CMC酶活最高3111IU/g,FPA最高135IU/g ,对发酵液得率平均6.7g/L。酶活总收率CMC酶活平均78.2%,FPA酶活平均73.5%。  相似文献   

19.
In an attempt to clarify the function of lactose in cellulase induction, experiments were carried out on cellulase formation by lactose along with other sugars in a resting cell system of Trichoderma reesei PC-3-7, a hypercellulase-producing mutant. Although lactose alone induces little cellulase under the conditions used, a synergistic effect on cellulase formation was observed following the respective addition of sophorose, cellobiose or galactose to lactose. The lactose consumption was more rapid when these sugars were added than in their absence. Furthermore, following lactose addition 10 h after the beginning of cultivation in the presence of cellobiose, cellulase formation was initiated with only a little lag, and lactose consumption started immediately, being complete in 14 h. \-Galactosidase induction experiments suggested that the rapid consumption of lactose is possibly not dependent on lactose degradation by the enzyme. From these results, it is suggested that lactose may function as an inducer for cellulase formation if it is taken up in the mycelium of T. reesei PC-3-7, and that sophorose, cellobiose or galactose may induce a putative lactose permease. *** DIRECT SUPPORT *** AG903066 00005  相似文献   

20.
里氏木霉及其纤维素酶高产菌株的研究进展   总被引:2,自引:0,他引:2  
随着纤维素在能源、材料及化工等领域的广泛开发和应用,里氏木霉作为一种重要的产纤维素酶工业用菌种,越来越受到人们的广泛关注.为了提高其酶活,人们做了大量的工作,获得了一些相当好的突变株.对里氏木霉及其突变株的基因组进行研究,有助于人们理解其高效产酶的机制,同时也有利于构建其基因工程菌.介绍里氏木霉Trichoderma reesei 的背景及其部分高产纤维素酶突变株,并阐述近些年来对其突变株的基因组的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号