首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We studied the photosynthetic electron transfer system of membrane-bound and soluble cytochromec inChlorobium tepidum, a thermophilic green sulfur bacterium, using whole cells and membrane preparations. Sulfide and thiosulfate, physiological electron donors, enhanced flash-induced photo-oxidation ofc-type cytochromes in whole cells. In membranes,c-553 cytochromes with two (or three) heme groups served as immediate electron donors for photo-oxidized bacteriochlorophyll (P840) in the reaction center, and appeared to be closely associated with the reaction center complex. The membrane-bound cytochromec-553 had anE m-value of 180 mV. When isolated soluble cytochromec-553, which has an apparent molecular weight of 10 kDa and seems to correspond to the cytochromec-555 inChlorobium limicola andChlorobium vibrioforme, was added to a membrane suspension, rapid photo-oxidation of both soluble and membrane-bound cytochromesc-553 was observed. The oxidation of soluble cytochromec-553 was inhibited by high salt concentrations. In whole cells, photo-oxidation was observed in the absence of exogenous electron donors and re-reduction was inhibited by stigmatellin, an inhibitor of the cytochromebc complex. These results suggest that the role of membrane-bound and soluble cytochromec inC. tepidum is similar to the role of cytochromec in the photosynthetic electron transfer system of purple bacteria.  相似文献   

4.
The electronic transitions of the two heme groups of cytochromec oxidase have been resolved by application of second-derivative and cryogenic absorption spectroscopy. Both methods reveal a splitting of the ferrocytochromea Soret transition into two features at 443 and 450 nm. The relative intensity of the 450 nm feature appears to depend on the ligation state of cytochromea 3, the solution pH, and complex formation with cytochromec. The structural origin and mechanistic significance of this second Soret transition of cytochromea are discussed in terms of the electron transfer and proton translocation activities of the enzyme.Dedicated to the memory of James Carl Copeland.  相似文献   

5.
The interaction of reduced rabbit cytochrome b5 with reduced yeast iso-1 cytochrome c has been studied through the analysis of 1H–15N HSQC spectra, of 15N longitudinal (R1) and transverse (R2) relaxation rates, and of the solvent exchange rates of protein backbone amides. For the first time, the adduct has been investigated also from the cytochrome c side. The analysis of the NMR data was integrated with docking calculations. The result is that cytochrome b5 has two negative patches capable of interacting with a single positive surface area of cytochrome c. At low protein concentrations and in equimolar mixture, two different 1:1 adducts are formed. At high concentration and/or with excess cytochrome c, a 2:1 adduct is formed. All the species are in fast exchange on the scale of differences in chemical shift. By comparison with literature data, it appears that the structure of one 1:1 adduct changes with the origin or primary sequence of cytochrome b5.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Abbreviations HSQC heteronuclear single quantum correlation spectroscopy - MD molecular dynamics  相似文献   

6.
Cytochrome c3 from Desulfovibrio vulgaris has four hemes per molecule, and a redox change at the hemes alters the conformation of the protein, leading to a redox-dependent change in the interaction of cytochrome c3 with redox partners (an electron acceptor or an electron donor). The redox-dependent change in this interaction was directly monitored by the high-performance electrochemical quartz crystal microbalance (EQCM) technique that has been improved to give high sensitivity in solution. In this method, cytochrome c3 molecules in solution associate electrostatically with a viologen-immobilized quartz crystal electrode as a monolayer, and redox of the associating cytochrome c3 is controlled by the immobilized viologen. This technique makes it possible to measure the access of cytochrome c3 to the electrode or repulsion from the electrode, and hence interconversion between an electrostatic complex and an electron transfer complex on the cytochrome c3 and the viologen as a mass change accompanying a potential sweep is monitored. In addition, simultaneous measurement of a mass change and a potential step reveals that the cytochrome c3 stores electrons when the four hemes are reduced (an electron pool effect), that is, the oxidized cytochrome c3 facilitates acceptance of electrons from the immobilized viologen molecule, but the reduced cytochrome c3 donates the accepted electrons to the viologen with difficulty.  相似文献   

7.
Summary The interference of cytochromec with absorption and fluorescence changes of the cyanine dye, diS-C3-(5), was investigated in the presence of liposomes and cytochromec-oxidase reconstituted proteoliposomes. The apparent cytochromec-dependent quenching of diS-C3-(5) fluorescence, and the associated absorbance losses in the presence of liposomes and proteoliposomes in low ionic strength media, are due to destruction of the dye caused by cytochromec-mediated lipid peroxidation. The rate of this reaction was further enhanced in the presence of hydrogen peroxide. Even in the absence of liposomes or proteoliposomes, a cytochromec-induced breakdown of dye was observed in the presence of hydrogen peroxide.The cytochromec mediated absorbance and fluorescence losses of diS-C3-(5) in liposomal or proteoliposomal systems are prevented by Ca2+ and La3+ ions, by ascorbate, by high ionic strength and by the antioxidant BHT. Under these conditions, the process of lipid peroxidation mediated by cytochromec is inhibited either directly (e. g. by BHT) or indirectly, by preventing the binding of cytochromec to lipid vesicles. The impact of these findings upon the experimental estimation of membrane potential inaa 3-reconstituted proteoliposomes is discussed.  相似文献   

8.
The experimental data currently available suggest that QH2: cytochromec oxidoreductase functions according to a Q-cycle type of mechanism. The molecular weight of the enzyme in a natural or artificial phospholipid bilayer or in solution corresponds to that of a dimer. The pre-steady state kinetics of reduction of the prosthetic groups indicate that the enzyme is functionally dimeric. A double Q cycle is proposed, describing the pathway of electron transfer in the dimeric QH2: cytochromec oxidoreductase. According to this scheme, the two monomeric halves of the enzyme act in a cooperative fashion to complete the catalytic cycle. It is proposed that high-potential cytochromeb-562 and low-potential cytochromeb-562 act cooperatively, viz. as a functional pair, in the antimycin-sensitive reduction of ubiquinone to ubiquinol.  相似文献   

9.
Quantitation of cytochromecoxidase in complex systems such as tissue homogenates is often hampered by the presence of other hemoproteins. Cyanide can bind to reduced cytochromecoxidase from diverse sources with a dissociation constant in the range of 0.1–0.5 mM and induces a characteristic optical change. This contrasts with the very weak binding of cyanide to reduced forms of many other hemoproteins, including hemoglobin and myoglobin. Hence, difference spectra of cyanide binding to reduced samples can provide an improved method to resolve and quantitate cytochromecoxidase. In addition, the cyanide compound of cytochromecoxidase is photolabile. This property can be exploited to further enhance the sensitivity of detection and analysis of cytochromecoxidase.  相似文献   

10.
Phospholipids and Emasol activate cytochrome oxidase by increasing its affinity for its substrate, cytochromec. Cardiolipin was most effective in activating cytochrome oxidase among phospholipids tested. Prior formation of a cytochromec-cytochrome oxidase complex changes the effect of phospholipids. In addition to their structural role in the last segment of the electron transport system, phospholipids can protect the enzyme from heat treatment and mercurial inhibition. They facilitate the interaction between cytochrome oxidase and cytochromec, as well as the cytochromec analogue, protamine.  相似文献   

11.
Experimental and theoretical investigation of the interaction of cytochromec and cytochromeb 5 performed over nearly twenty years has produced considerable insight into the manner in which these proteins recognize and bind to each other. The results of these studies and the experimental and theoretical strategies that have been developed to achieve these results have significant implications for understanding the behavior of similar complexes formed by more complex and less-well characterized electron transfer proteins. The current review provides a comprehensive summary and critical evaluation of the literature on which the current status of our understanding of the interaction of cytochromec and cytochromeb 5 is based. The general issues related to the study of electron transfer complexes of this type are discussed and some new directions for future investigation of such systems are considered.  相似文献   

12.
Mitochondrial cytochromec oxidase is an exceedingly complex multistructural and multifunctional membranous enzyme. In this review, we will provide an overview of the many interactions of cytochrome oxidase, stressing developments not covered by the excellent monograph of Wikström, Krab, and Saraste (1981), and continuing into early 1983. First we describe its functions (both in the nominal sense, as a transporter of electrons between cytochromec and oxygen, and in its role in energy transduction). Then we describe its structure, emphasizing the protein (its structure as a whole, the number and stoichiometry of its subunits, their biosynthetic origin, and their interactions with each other, with other components of the enzyme complex, and with the membrane as a whole). Finally, we present a model in which the protein conformation serves as the focus for the dynamic interaction of its two major functions.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - E m midpoint potential - EPR electron paramagnetic resonance - F1 soluble portion of the ATP synthetase complex - NMR nuclear magnetic resonance - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - SUPAGE SDS-urea-PAGE  相似文献   

13.
The structural features of cytochrome oxidases are reviewed in light of their evolution. The substrate specificity (quinol vs. cytochromec) is reflected in the presence of a unique copper centre (Cu A ) in cytochromec oxidases. In several lines of evolution, quinol oxidases have independently lost this copper. Also, the most primitive cytochromec oxidases do not contain this copper, and electron entry takes place viac-type haems. These enzymes, exemplified by the rhizobial FixN complex, probably remind the first oxidases. They are related to the denitrification enzyme nitric oxide reductase.  相似文献   

14.
Summary The1H NMR signals of the heme methyl, propionate and related chemical groups of cytochromec 3 fromDesulfovibrio vulgaris Miyazaki F (D.v. MF) were site-specifically assigned by means of ID NOE, 2D DQFCOSY and 2D TOCSY spectra. They were consistent with the site-specific assignments of the hemes with the highest and second-lowest redox potentials reported by Fan et al. (Biochemistry,29 (1990) 2257–2263). The site-specific heme assignments were also supported by NOE between the methyl groups of these hemes and the side chain of Val18. All the results contradicted the heme assignments forD.v. MF cytochromec 3 made on the basis of electron spin resonance (Gayda et al. (1987)FEBS Lett.,217 57–61). Based on these assignments, the interaction of cytochromec 3 withD.v. MF ferredoxin I was investigated by NMR. The major interaction site of cytochromec 3 was identified as the heme with the highest redox potential, which is surrounded by the highest density of positive charges. The stoichiometry and association constant were two cytochromec 3 molecules per monomer of ferredoxin I and 108 M–2 (at 53 mM ionic strength and 25°C), respectively.  相似文献   

15.
Electron transport in theParacoccus denitrificans respiratory chain system is considerably more rapid when it includes the membrane-bound cytochromec 552 than with either solubleParacoccus c 550 or bovine cytochromec; a pool function for cytochromec is not necessary. Low concentrations ofParacoccus or bovine cytochromec stimulate the oxidase activity. This observation could explain the multiphasic Scatchard plots which are obtained. A negatively charged area on the back side ofParacoccus c which is not present in mitochondrialc could be a control mechanism forParacoccus reactions.Paracoccus oxidase and reductase reactions with bovinec show the same properties as mammalian systems; and this is true ofParacoccus oxidase reactions with its own soluble cytochromec if added polycation masks the negatively charged area. Evidence for different oxidase and reductase reaction sites on cytochromec include: (1) stimulation of the oxidase but not reductase by a polycation; (2) differences in the inhibition of the oxidase and reductases by monoclonal antibodies toParacoccus cytochromec; and (3) reaction of another bacterial cytochromec withParacoccus reductases but not oxidase. Rapid electron transport occurs in cytochromec-less mutants ofParacoccus, suggesting that the reactions result from collision of diffusing complexes.  相似文献   

16.
Data are presented on three components of the quinol oxidation branch of theParacoccus respiratory chain: cytochromec reductase, cytochromec 552, and thea-type terminal oxidase. Deletion mutants in thebc 1 and theaa 3 complex give insight into electron pathways, assembly processes, and stability of both redox complexes, and, moreover, are an important prerequisite for future site-directed mutagenesis experiments. In addition, evidence for a role of cytochromec 552 in electron transport between complex III and IV is presented.  相似文献   

17.
It has been suggested that two groups ofEscherichia coli genes, theccm genes located in the 47-min region and thenrfEFG genes in the 92-min region of the chromosome, are involved in cytochromec biosynthesis during anaerobic growth. The involvement of the products of these genes in cytochromec synthesis, assembly and secretion has now been investigated. Despite their similarity to other bacterial cytochromec assembly proteins, NrfE, F and G were found not to be required for the biosynthesis of any of thec-type cytochromes inE. coli. Furthermore, these proteins were not required for the secretion of the periplasmic cytochromes, cytochromec 550 and cytochromec 552, or for the correct targeting of the NapC and NrfB cytochromes to the cytoplasmic membrane. NrfE and NrfG are required for formate-dependent nitrite reduction (the Nrf pathway), which involves at least twoc-type cytochromes, cytochromec 552 and NrfB, but NrfF is not essential for this pathway. Genes similar tonrfE, nrfF andnrfG are present in theE. coli nap-ccm locus at minute 47. CcmF is similar to NrfE, the N-terminal region of CcmH is similar to NrfF and the C-terminal portion of CcmH is similar to NrfG. In contrast to NrfF, the N-terminal, NrfF-like portion of CcmH is essential for the synthesis of allc-type cytochromes. Conversely, the NrfG-like C-terminal region of CcmH is not essential for cytochromec biosynthesis. The data are consistent with proposals from this and other laboratories that CcmF and CcmH form part of a haem lyase complex required to attach haemc to C-X-X-C-H haem-binding domains. In contrast, NrfE and NrfG are proposed to fulfill a more specialised role in the assembly of the formate-dependent nitrite reductase.  相似文献   

18.
We have studied in detail the effects of dicyclohexylcarbodiimide (DCCD) on the redox activity of the mitochondrialbc 1 complex, and on the binding of its most specific inhibitor antimycin. An inhibitory action of the reagent has been found only at high concentration of the diimide and/or at prolonged times of incubation. Under these conditions, DCCD also displaced antimycin from its specific binding site in thebc 1 complex, but did not apparently change the antimycin sensitivity of the ubiquinol-cytochromec reductase activity. On the other hand, using lower DCCD concentrations and/or short times of incubation, i.e., conditions which usually lead to the specific inhibition of the proton-translocating activity of thebc 1 complex, no inhibitory effect of DCCD could be detected in the ubiquinol-cytochromec reductase activity. However, a clear stimulation of the rate of cytochromeb reduction in parallel to an inhibition of cytochromeb oxidation has been found under these conditions. On the basis of the present work and of previous reports in the literature about the effects of DCCD on thebc 1 complex, we propose a clarification of the various effects of the reagent depending on the experimental conditions employed.  相似文献   

19.
The iron-sulfur protein of the cytochromebc 1 complex oxidizes ubiquinol at center P in the protonmotive Q cycle mechanism, transferring one electron to cytochromec 1 and generating a low-potential ubisemiquinone anion which reduces the low-potential cytochromeb-566 heme group. In order to catalyze this divergent transfer of two reducing equivalents from ubiquinol, the iron-sulfur protein must be structurally integrated into the cytochromebc 1 complex in a manner which facilitates electron transfer from the iron-sulfur cluster to cytochromec 1 and generates a strongly reducing ubisemiquinone anion radical which is proximal to theb-566 heme group. This radical must also be sequestered from spurious reactivities with oxygen and other high-potential oxidants. Experimental approaches are described which are aimed at understanding how the iron-sulfur protein is inserted into center P, and how the iron-sulfur cluster is inserted into the apoprotein.  相似文献   

20.
Although duroquinone had little effect upon NADH oxidation in neutral lipid depleted mitochondria, durohydroquinone was oxidized by ETP at a rate sensitive to antimycin A. Fractionation of mitochondria into purified enzyme systems showed durohydroquinone: cytochromec reductase to be concentrated in NADH: cytochromec reductase, absent in succinate:cytochromec reductase, and decreased in reduced coenzyme Q:cytochromec reductase. Durohydroquinone oxidation could be restored by recombining reduced coenzyme Q:cytochromec reductase with NADH:coenzyme Q reductase. Pentane extraction had no effect upon either durohydroquinone or reduced coenzyme Q10 oxidation, indicating lack of a quinone requirement between cytochromesb andc. Both chloroquine diphosphate and acetone (96%) treatment irreversibly inhibited NADH but not succinate oxidation. Neither reagents had any effect upon durohydroquinone oxidation but both inhibited reduced coenzyme Q10 oxidation 50%, indicating a site of action between Q10 and duroquinone sites. Loss of chloroquine sensitive reduced coenzyme Q10 oxidation after acetone extraction suggests two sites for Q10 before cytochromeb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号