首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cytokine signaling involves the participation of many adaptor proteins, including the docking protein TNF receptor-associated factor-2 (TRAF-2), which is believed to transmit the TNF-alpha signal through both the I kappa B/NF-kappa B and c-Jun N-terminal kinase (JNK)/stress-related protein kinase (SAPK) pathways. The physiological role of TRAF proteins in cytokine signaling in intestinal epithelial cells (IEC) is unknown. We characterized the effect of a dominant-negative TRAF-2 delivered by an adenoviral vector (Ad5dnTRAF-2) on the cytokine signaling cascade in several IEC and also investigated whether inhibiting the TRAF-2-transmitting signal blocked TNF-alpha-induced NF-kappa B and IL-8 gene expression. A high efficacy and level of Ad5dnTRAF-2 gene transfer were obtained in IEC using a multiplicity of infection of 50. Ad5dnTRAF-2 expression prevented TNF-alpha-induced, but not IL-1 beta-induced, I kappa B alpha degradation and NF-kappa B activation in NIH-3T3 and IEC-6 cells. TNF-alpha-induced JNK activation was also inhibited in Ad5dnTRAF-2-infected HT-29 cells. Induction of IL-8 gene expression by TNF-alpha was partially inhibited in Ad5dnTRAF-2-transfected HT-29, but not in control Ad5LacZ-infected, cells. Surprisingly, IL-1 beta-mediated IL-8 gene expression was also inhibited in HT-29 cells as measured by Northern blot and ELISA. We concluded that TRAF-2 is partially involved in TNF-alpha-mediated signaling through I kappa B/NF-kappa B in IEC. In addition, our data suggest that TRAF-2 is involved in IL-1 beta signaling in HT-29 cells. Manipulation of cytokine signaling pathways represents a new approach for inhibiting proinflammatory gene expression in IEC.  相似文献   

4.
5.
TNF-alpha induced a dose- and time-dependent increase in cyclooxygenase-2 (COX-2) expression and PGE2 formation in human NCI-H292 epithelial cells. Immunofluorescence staining demonstrated that COX-2 was expressed in cytosol and nuclear envelope. Tyrosine kinase inhibitors (genistein or herbimycin) or phosphoinositide-specific phospholipase C inhibitor (U73122) blocked TNF-alpha-induced COX-2 expression. TNF-alpha also stimulated phosphatidylinositol hydrolysis and protein kinase C (PKC) activity, and both were abolished by genistein or U73122. The PKC inhibitor, staurosporine, also inhibited TNF-alpha-induced response. The 12-O-tetradecanoylphorbol 13-acetate (TPA), a PKC activator, also stimulated COX-2 expression, this effect being inhibited by genistein or herbimycin. NF-kappaB DNA-protein binding and COX-2 promoter activity were enhanced by TNF-alpha, and these effects were inhibited by genistein, U73122, staurosporine, or pyrolidine dithiocarbamate. TPA stimulated both NF-kappaB DNA-protein binding and COX-2 promoter activity, these effects being inhibited by genistein, herbimycin, or pyrolidine dithiocarbamate. The TNF-alpha-induced, but not the TPA-induced, COX-2 promoter activity was inhibited by phospholipase C-gamma2 mutants, and the COX-2 promoter activity induced by either agent was attenuated by dominant-negative mutants of PKC-alpha, NF-kappaB-inducing kinase, or I-kappaB (inhibitory protein that dissociates from NF-kappaB) kinase (IKK)1 or 2. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by staurosporine or herbimycin. These results suggest that, in NCI-H292 epithelial cells, TNF-alpha might activate phospholipase C-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and protein tyrosine kinase, resulting in the activation of NF-kappaB-inducing kinase and IKK1/2, and NF-kappaB in the COX-2 promoter, then initiation of COX-2 expression and PGE2 release.  相似文献   

6.
7.
NF-kappa B-inducing kinase (NIK) is involved in lymphoid organogenesis in mice through lymphotoxin-beta receptor signaling. To clarify the roles of NIK in T cell activation through TCR/CD3 and costimulation pathways, we have studied the function of T cells from aly mice, a strain with mutant NIK. NIK mutant T cells showed impaired proliferation and IL-2 production in response to anti-CD3 stimulation, and these effects were caused by impaired NF-kappa B activity in both mature and immature T cells; the impaired NF-kappa B activity in mature T cells was also associated with the failure of maintenance of activated NF-kappa B. In contrast, responses to costimulatory signals were largely retained in aly mice, suggesting that NIK is not uniquely coupled to the costimulatory pathways. When NIK mutant T cells were stimulated in the presence of a protein kinase C (PKC) inhibitor, proliferative responses were abrogated more severely than in control mice, suggesting that both NIK and PKC control T cell activation in a cooperative manner. We also demonstrated that NIK and PKC are involved in distinct NF-kappa B activation pathways downstream of TCR/CD3. These results suggest critical roles for NIK in setting the threshold for T cell activation, and partly account for the immunodeficiency in aly mice.  相似文献   

8.
9.
10.
11.
Recent studies suggest that the skeletal muscle may be a significant site of IL-6 production in various conditions, including exercise, inflammation, hypoperfusion, denervation, and local muscle injury. The mediators and molecular mechanisms regulating muscle IL-6 production are poorly understood. We tested the hypothesis that IL-6 production in muscle cells is regulated by IL-1beta and that mitogen-activated protein (MAP) kinase signaling and NF-kappaB activation are involved in IL-1beta-induced IL-6 production. Cultured C2C12 cells, a mouse skeletal muscle cell line, were treated with different concentrations (0.1-2 ng/ml) of IL-1beta in the absence or presence of the p38 MAP kinase inhibitor SB-208350 or the p42/44 inhibitor PD-98059. Protein and gene expression of IL-6 were determined by ELISA and real-time PCR, respectively. NF-kappaB DNA binding activity was determined by electrophoretic mobility shift assay and by transfecting myocytes with a luciferase reporter plasmid containing a promoter construct with multiple repeats of NF-kappaB binding site. Treatment of myotubes with IL-1beta resulted in a dose- and time-dependent increase of IL-6 production accompanied by an approximately 25-fold increase in IL-6 mRNA levels. IL-1beta stimulated NF-kappaB DNA binding activity and gene activation. SB-208350 and PD-98059 inhibited the increase in IL-6 production induced by IL-1beta. The present results support the concept that skeletal muscle is an important site of IL-6 production. In addition, the results suggest the IL-1beta regulates muscle IL-6 production at least in part by activating the MAP kinase pathway and NF-kappaB.  相似文献   

12.
Inflammation and pro-hypertrophic signaling are important for development and progression of myocardial hypertrophy (LVH) and chronic heart failure (CHF). Here we investigated the relevance of integrin-linked kinase (ILK) for chemokine receptor CXCR4- and angiotensin II type 1-triggered signaling and its regulation and role in cardiac remodeling.Using ELISA, real-time-PCR, and Western blotting, the present study demonstrates that SDF-1 and its receptor CXCR4 are up-regulated in plasma and left ventricles, respectively, in mouse models of cardiac hypertrophy (transaortic constriction, transgenic cardiac-specific overexpression of rac1) and in human CHF in association with increased cardiac ILK-expression. In isolated cardiomyocytes, ILK is activated by CXCR4-ligation and necessary for SDF-1-triggered activation of rac1, NAD(P)H oxidase, and release of reactive oxygen species. Importantly, the pro-hypertrophic peptide angiotensin II induces ILK-activation dependent on rac1 in cardiomyocytes, where ILK is necessary for angiotensin II-mediated stimulation of hypertrophy genes and protein synthesis.We conclude that in both SDF-1- and angiotensin II-triggered signaling, ILK is a central mediator of rac1-induced oxidative stress and myocardial hypertrophy.  相似文献   

13.
14.
15.
Inflammatory mediators are involved in the early phase of acutepancreatitis, but the cellular mechanisms responsible for theirgeneration within pancreatic cells are unknown. We examined the role ofnuclear factor-B (NF-B) in cholecystokinin octapeptide (CCK-8)-induced mob-1 chemokineexpression in pancreatic acinar cells in vitro. Supraphysiological, butnot physiological, concentrations of CCK-8 increased inhibitory B(IB-) degradation, NF-B activation, andmob-1 gene expression in isolatedpancreatic acinar cells. CCK-8-induced IB- degradation wasmaximal within 1 h. Expression ofmob-1 was maximal within 2 h. Neitherbombesin nor carbachol significantly increasedmob-1 mRNA or induced IB-degradation. Thus the concentration, time, and secretagogue dependenceof mob-1 gene expression and IB-degradation were similar. Inhibition of NF-B with pharmacologicalagents or by adenovirus-mediated expression of the inhibitory proteinIB- also inhibited mob-1 geneexpression. These data indicate that the NF-B signaling pathway isrequired for CCK-8-mediated induction ofmob-1 chemokine expression inpancreatic acinar cells. This supports the hypothesis that NF-Bsignaling is of central importance in the initiation of acute pancreatitis.

  相似文献   

16.
The keratinocyte growth factor receptor (KGFR) is a member of the fibroblast growth factor receptor (FGFR) superfamily. The proximal signaling molecules of FGFRs are much less characterized compared with other growth factor receptors. Using the yeast two-hybrid assay, we have identified ribosomal S6 kinase (RSK) to be a protein that associates with the cytoplasmic domain of the KGFR. The RSK family of kinases controls multiple cellular processes, and our studies for the first time show association between the KGFR and RSK. Using a lung-specific inducible transgenic system we have recently demonstrated protective effects of KGF on the lung epithelium and have demonstrated KGF-induced activation of the prosurvival Akt pathway both in vivo and in vitro. Here we show that a kinase inactive RSK mutant blocks KGF-induced Akt activation and KGF-mediated inhibition of caspase 3 activation in epithelial cells subjected to oxidative stress. It was recently shown that RSK2 recruits PDK1, the kinase responsible for both Akt and RSK activation. When viewed collectively, it appears that the association between the KGFR and RSK plays an important role in KGF-induced Akt activation and consequently in the protective effects of KGF on epithelial cells.  相似文献   

17.
We previously reported that IL-1beta and the decoy receptor for IL-1 (IL-1RII) are expressed by intestinal epithelial cells (IEC) during detachment-induced cell death, or "anoikis." We now investigated whether IL-1 regulates anoikis. Skewing the balance in favor of IL-1, by blocking IL-1RII or by adding IL-1beta to detached rat IEC-18 cells, reduced cell death. The protective effect of anti-IL-1RII was reversed by blocking IL-1beta, confirming the anti-apoptotic effect was due to endogenous IL-1beta. Added IL-1beta also rescued cells from anoikis and was associated with considerable aggregation of the detached cells. Aggregate formation and the anti-apoptotic effect of added IL-1beta were prevented by blocking E-cadherin, indicating that IL-1 promoted aggregation and indirectly, survival. On the other hand, treating detached cells with IL-1beta and an anti-beta(1) integrin antibody abolished the protective effect of IL-1beta but not the aggregates. We conclude that the anti-apoptotic effect of IL-1 is mediated through a beta(1) integrin-dependent event secondary to cell-cell adhesion. This illustrates a previously uncharacterized role for IL-1 in the intestine wherein this cytokine may facilitate the preservation of the epithelial monolayer integrity.  相似文献   

18.
19.
Alymphoplasia (aly) mice, a natural strain with a mutant NF-kappa B-inducing kinase (NIK) gene, manifest a unique phenotype; they lack lymph nodes and Peyer's patches, have a disturbed spleen architecture, and exhibit defects in both Ab and cellular immune responses. Although a stromal defect caused by impaired lymphotoxin-beta receptor signaling accounts for their abnormal lymphoid organogenesis, the exact mechanisms underlying the development of immunodeficiency in aly mice are poorly understood. We therefore investigated the contribution of hemopoietic cells with the aly NIK mutation to the development of immunodeficiency. Transfer of aly/aly bone marrow cells into aly/+ mice resulted in poorly developed B cell follicles and lack of support for the development of germinal centers and isotype switching, indicating that the hemopoietic cells of aly mice contain an autonomous defect. However, follicular dendritic cell clusters were maintained in the spleens of these bone marrow chimeras, suggesting that the lack of follicular dendritic cell clusters in aly mice is probably due to the stromal defect. The aly mice lacked marginal zone B cells in their spleens, and aly/aly B cells showed an impaired proliferative response after in vitro stimulation. IL-2 production by activated T cells was also impaired. By contrast, the dendritic cells of aly mice exhibited grossly normal development and function. Supporting the concept of an autonomous cell defect, Rel protein expression was altered in aly/aly spleens. Thus, the aly NIK mutation affects hemopoietic cell function in an intrinsic fashion and, together with the stromal defect, may contribute to the development of immunodeficiency in aly mice.  相似文献   

20.
Lipopolysaccharide (LPS) is recognized as an inducer of the inflammatory response associated with gram-negative sepsis and systemic inflammatory response syndrome. LPS induction proceeds through Toll-like receptor (TLR) in immune cells and intestinal epithelial cells (IEC). This report presents the first identification of Bcl10 (B-cell CLL/lymphoma 10) as a mediator of the LPS-induced activation of IL-8 in human IEC. Bcl10 is a caspase-recruitment domain-containing protein, associated with constitutive activation of NF-kappaB in MALT (mucosa-associated lymphoid tissue) lymphomas. The normal human IEC line NCM460, normal primary human colonocytes, and ex vivo human colonic tissue were exposed to 10 ng/ml of LPS for 2-6 h. Effects on Bcl10, phospho-IkappaBalpha, NF-kappaB, and IL-8 were determined by Western blot, ELISA, immunohistochemistry, and confocal microscopy. Effects of Bcl10 silencing by small-interfering RNA (siRNA), TLR4 blocking antibody, TLR4 silencing by siRNA, and an IL-1 receptor-associated kinase (IRAK)-1/4 inhibitor on LPS-induced activation were examined. Following Bcl10 silencing, LPS-induced increases in NF-kappaB, IkappaBalpha, and IL-8 were significantly reduced (P < 0.001). Increasing concentrations of LPS were associated with higher concentrations of Bcl10 protein when quantified by ELISA, and the association between LPS exposure and increased Bcl10 was also demonstrated by Western blot, immunohistochemistry, and confocal microscopy. Exposure to TLR4 antibody, TLR4 siRNA, or an IRAK-1/4 inhibitor eliminated the LPS-induced increases in Bcl10, NF-kappaB, and IL-8. Identification of Bcl10 as a mediator of LPS-induced activation of NF-kappaB and IL-8 in normal human IEC provides new insight into mechanisms of epithelial inflammation and new opportunities for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号