首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antigen 5 is a major allergen of vespid venom. It has partial sequence identity with proteins from diverse sources. The biologic function of Ag 5 and its related proteins is not known. We are interested in the expression of Ag 5 with the native conformation of the natural protein since its B cell epitopes are mainly of the discontinuous type. When expressed in bacteria, recombinant Ag 5 formed an insoluble intracellular product, and it did not translocate from cytoplasm to periplasm by the addition of a pelB leader sequence to the cloned protein. When expressed in yeast Pichia pastoris, Ag 5 was secreted because the cloned protein contained a yeast alpha signal leader sequence. Recombinant Ag 5 from yeast was shown to have the native structure of the natural protein and the recombinant Ag 5 from bacteria did not. This was shown by comparison of their solubility, electrophoretic behavior, disulfide bond content, CD spectrum, and binding of IgE antibodies from allergic patients and IgG antibodies from mice immunized with natural Ag 5 or recombinant Ag 5s from yeast or bacteria. These studies were made with Ag 5s from yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis).  相似文献   

2.
Antigen 5 is a major allergen of vespid venom. It has partial sequence identity with proteins from diverse sources. The biologic function of Ag 5 and its related proteins is not known. We are interested in the expression of Ag 5 with the native conformation of the natural protein since its B cell epitopes are mainly of the discontinuous type. When expressed in bacteria, recombinant Ag 5 formed an insoluble intracellular product, and it did not translocate from cytoplasm to periplasm by the addition of a pelB leader sequence to the cloned protein. When expressed in yeast Pichia pastoris, Ag 5 was secreted because the cloned protein contained a yeast α signal leader sequence. Recombinant Ag 5 from yeast was shown to have the native structure of the natural protein and the recombinant Ag 5 from bacteria did not. This was shown by comparison of their solubility, electrophoretic behavior, disulfide bond content, CD spectrum, and binding of IgE antibodies from allergic patients and IgG antibodies from mice immunized with natural Ag 5 or recombinant Ag 5s from yeast or bacteria. These studies were made with Ag 5s from yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis).  相似文献   

3.
An efficient preparation of Periplaneta americana nymphae allergen, Cr PI (54 kDa) is described. It was expressed as a GST-tag fusion protein in Escherichia coli, strain BL21 (DE3). Expression of recombinant Cr PI (rCr PI), denaturation/renaturation of the inclusion bodies and the effects of protein and L-arginine concentration on inclusion body aggregation were optimized. The fusion protein was purified by affinity chromatography and size exclusion chromatography, and Cr PI fusion protein was purified to >95%. rCr PI bound strongly to IgE in the sera of individuals with cockroach allergies as shown by western blot and ELISA. Highly refolded and purified recombinant protein was obtained, providing a basis for the large-scale preparation of Cr PI allergen.  相似文献   

4.
The most frequent pet allergy is to cat and dog, but in recent years, it has become increasingly popular to have other pets, and the risk of exposure to new allergens is more prevalent. The list of new pets includes hamsters, and one of the most popular hamsters is the Siberian hamster (Phodopus sungorus). The aim of this study was the characterization and cloning of the major allergen from this hamster. The study of its allergenicity and cross-reactivity could improve the specific diagnosis and treatment for hamster-allergic patients. Thirteen Siberian hamster-allergic patients were recruited at the outpatient clinic. Protein extracts were prepared from the hair, urine, and salivary glands of four hamster species (European, golden, Siberian, and Roborovski). IgE-binding proteins were detected by immunoblotting and identified by mass spectrometry. The recombinant protein was produced in Escherichia coli and then purified by metal chelate affinity chromatography. The allergenic properties of the recombinant protein were tested by ELISA and immunoblotting, and biological activity was tested according to capacity for basophil activation. Three IgE-binding proteins were identified in extracts obtained from Siberian hamster hair, urine, and salivary glands. All proteins corresponded to the same protein, which was identified as a lipocalin. This lipocalin had no cross-reactivity with common and golden hamsters. The recombinant allergen was cloned and purified, showing similar IgE reactivity in vitro to Siberian hamster protein extracts. Also, the recombinant allergen was capable of producing biological activation in vivo. The major Siberian hamster allergen was cloned, and allergenic properties were characterized, providing a new tool for specific diagnosis of allergy to Siberian hamster.  相似文献   

5.
The aim of the work is the development of a method of detection of specific class E immunoglobulins (IgE) to the main Bet v 1 birch allergen based on immuno-PCR (iPCR). The recombinant Bet v 1 allergen was obtained in E. coli cells. Its ability to bind to specific IgE was confirmed by enzyme-linked immunosorbent assay (ELISA) using previously characterized sera of individuals with an allergic reaction to birch pollen and control sera in individuals, in which the reaction to this allergen is absent. Based on the obtained recombinant protein, the method of iPCR analysis of specific IgE to Bet v 1 was developed. It was demonstrated that iPCR sensitivity is comparable to ELISA sensitivity, and the titration curves of specific sera in iPCR (unlike those in ELISA) demonstrate a linear dependence; this makes the developed method preferable for quantitative estimation of specific IgE in sera as compared with ELISA.  相似文献   

6.
虾夷扇贝过敏原tropomyosin的克隆表达、纯化及免疫学鉴定   总被引:4,自引:0,他引:4  
从虾夷扇贝(Patinopecten yessoensis)肌肉中提取总RNA,RT-PCR克隆虾夷扇贝中变应原原肌球蛋白的全长基因,根据序列设计带有酶切位点的特异性引物,扩增扇贝tropomyosin的完整开放阅读框,与pET-28a载体连接并转化大肠杆菌Escherichia.coli BL21(DE3),诱导表达后,Ni2+亲和层析柱纯化重组蛋白,Western-blot检测其免疫学活性。经序列测定,该基因含有长度为855bp的开放阅读框,编码284个氨基酸,其在GenBank数据库中的登录号为EU839640。SDS-PAGE检测该重组变应原在大肠杆菌中高效表达36kD的目的蛋白,且重组变应原具有良好的IgE结合活性。研究获得了具有变应原活性的重组虾夷扇贝tropomyosin,为扇贝过敏性疾病的诊断和治疗奠定了基础。    相似文献   

7.
Cladosporium herbarum is an important allergenic fungal species that has been reported to cause allergic diseases in nearly all climatic zones. 5-30% of the allergic population displays IgE antibodies against molds. Sensitization to Cladosporium has often been associated with severe asthma and less frequently with chronic urticaria and atopic eczema. However, no dominant major allergen of this species has been found so far. We present cloning, production, and characterization of NADP-dependent mannitol dehydrogenase of C. herbarum (Cla h 8) and show that this protein is a major allergen that is recognized by IgE antibodies of approximately 57% of all Cladosporium allergic patients. This is the highest percentage of patients reacting with any Cladosporium allergen characterized so far. Cla h 8 was purified to homogeneity by standard chromatographic methods, and both N-terminal and internal amino acid sequences of protein fragments were determined. Enzymatic analysis of the purified natural protein revealed that this allergen represents a NADP-dependent mannitol dehydrogenase that interconverts mannitol and d-fructose. It is a soluble, non-glycosylated cytoplasmic protein. Two-dimensional protein analysis indicated that mannitol dehydrogenase is present as a single isoform. The cDNA encoding Cla h 8 was cloned from a lambda-ZAP library constructed from hyphae and spores. The recombinant non-fusion protein was expressed in Escherichia coli and purified to homogeneity. Its immunological and biochemical identity with the natural protein was shown by enzyme activity tests, CD spectroscopy, IgE immunoblots with sera of patients, and by skin prick testing of Cladosporium allergic patients. This protein therefore is a new major allergen of C. herbarum.  相似文献   

8.
Approximately 50% of allergic patients are sensitized against grass pollen allergens. The characterization of specific immunoglobulin E (IgE) reactivity to allergen components in pollen-allergic patients is fundamental for clinical diagnosis and for immunotherapy. Complex allergen extracts are commonly used in diagnostic tests as well as in immunotherapy preparations, but their composition in single allergenic molecules is only partially known. Diagnostic tests which utilize recombinant or immuno-purified allergens have been made available in clinical practice. They allow to obtain specific profiles of IgE reactivity, but the panel of available molecules is far from complete. Here, we used a proteomic approach in order to detect grass allergens from a natural protein extract. A five-grass pollen extract used for diagnosis and immunotherapy was resolved by two dimensional gel electrophoresis (2-DE), and assayed with 9 sera from pollen-allergic patients whose sensitization profile was dissected by using IgE reactivity to recombinant allergens. 2-DE immunoreactivity patterns were matched with IgE reactivity to identify protein spots as candidate allergens. Identity was confirmed by mass spectrometry analysis. We identified 6 out of 8 expected clinically relevant allergens in the natural grass extract. Moreover, we identified different molecular isoforms of single allergens, thus obtaining a more detailed profile of IgE reactivity. Some discrepancies in protein isoform profile and sera immunoreactivity between recombinant and native allergen 5 from Phleum pratense were observed and a new putative allergen was described. The proteomic approach applied to the analysis of a natural allergen allows the comprehensive evaluation of the sensitization profile of allergic patients and the identification of new allergens.  相似文献   

9.
美洲大蠊变应原Cr PI的表达、纯化与免疫学特性鉴定   总被引:9,自引:1,他引:8  
以阳性噬菌体克隆为模板,通过PCR扩增出目的基因片段并克隆入T载体,经测序证实为美洲大 蠊Periplaneta americana变应原Cr PI后,将该基因亚克隆入表达载体pGEX-5X-1。美洲 大蠊变应原Cr PI在大肠杆菌中得到高效表达,但主要以包涵体形式存在于沉淀中。目的蛋白溶 于6 mol/L盐酸胍并经稀释复性后,经Glutathione SepharoseTM4B亲和层析,纯度达 90%以上。以蟑螂过敏病人血清进行免疫印迹检测,结果显示重组变应原具有良好的IgE结合活 性。  相似文献   

10.
11.
Pear is known as an allergenic food involved in the ‘oral allergy syndrome’ which affects a high percentage of patients allergic to birch pollen. The aim of this study was to clone the major allergen of this fruit, to express it as bacterial recombinant protein and to study its allergenic properties in relation to homologous proteins and natural allergen extracts. The coding region of the cDNA was obtained by a PCR strategy, cloned, and the allergen was expressed as His-Tag fusion protein. The fusion peptide was removed by treatment with cyanogen bromide. Purified non-fusion protein was subjected to allergenicity testing by the enzyme allergosorbent test (EAST), Western blotting, competitive inhibition assays, and basophil histamine release. The deduced protein sequence shared a high degree of identity with other major allergens from fruits, nuts, vegetables, and pollen, and with a family of PR-10 pathogenesis related proteins. The recombinant (r) protein was recognised by specific IgE from sera of all pear-allergic patients (n=16) investigated in this study. Hence, the allergen was classified as a major allergen and named Pyr c 1. The IgE binding characteristics of rPyr c 1 appeared to be similar to the natural pear protein, as was demonstrated by EAST-inhibition and Western blot-inhibition experiments. Moreover, the biological activity of rPyr c 1 was equal to that of pear extract, as indicated by basophil histamine release in two patients allergic to pears. The related major allergens Bet v 1 from birch pollen and Mal d 1 from apple inhibited to a high degree the binding of IgE to Pyr c 1, whereas Api g 1 from celery, also belonging to this family, had little inhibitory effects, indicating epitope differences between Bet v 1-related food allergens. Unlimited amounts of pure rPyr c 1 are now available for studies on the structure and epitopes of pollen-related food allergens. Moreover, the allergen may serve as stable and standardised diagnostic material.  相似文献   

12.
The glycoprotein Ole e 1 is a significant aeroallergen from the olive tree (Olea europaea) pollen, with great clinical relevance in the Mediterranean area. To produce a biologically active form of recombinant Ole e 1, heterologous expression in the methylotrophic yeast Pichia pastoris was carried out. A cDNA encoding Ole e 1, fused to a Saccharomyces cerevisiae alpha-mating factor prepropeptide using the pPIC9 vector, was inserted into the yeast genome under the control of the AOX1 promoter. After induction with methanol, the protein secreted into the extracellular medium was purified by ion-exchange and size-exclusion chromatography. The structure of the isolated recombinant Ole e 1 was determined by chemical and spectroscopic techniques, and its immunological properties analysed by blotting and ELISA inhibition with Ole e 1-specific monoclonal antibodies and IgE from sera of allergic patients. The allergen was produced at a yield of 60 mg per litre of culture as a homogeneous glycosylated protein of around 18.5 kDa. Recombinant Ole e 1 appears to be properly folded, as it displays spectroscopic properties (CD and fluorescence) and immunological reactivities (IgG binding to monoclonal antibodies sensitive to denaturation and IgE from sera of allergic patients) indistinguishable from those of the natural protein. This approach gives high-yield production of homogeneous and biologically active allergen, which should be useful for scientific and clinical purposes.  相似文献   

13.
Jun a 3, a major allergenic protein in mountain cedar pollen, causes seasonal allergic rhinitis in hypersensitive individuals. Recombinant Jun a 3 was expressed in Nicotiana benthamiana interstitial fluid (300 microg/g leaf material) and Pichia pastoris (100 microg/ml media). Polyclonal anti-Jun a 3 and IgE antibodies from the sera of allergic patients both reacted with the recombinant protein. Of the two systems, recombinant protein from the plant apoplast contained fewer contaminating proteins. This method allows for a more convenient and inexpensive expression of the recombinant allergen, which will allow for further structural studies and may prove useful in diagnostic and/or immunotherapeutic strategies for cedar allergy.  相似文献   

14.
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.  相似文献   

15.
Until now, only a small amount of information is available about tomato allergens. In the present study, a glycosylated allergen of tomato (Lycopersicon esculentum), Lyc e 2, was purified from tomato extract by a two-step FPLC method. The cDNA of two different isoforms of the protein, Lyc e 2.01 and Lyc e 2.02, was cloned into the bacterial expression vector pET100D. The recombinant proteins were purified by electroelution and refolded. The IgE reactivity of both the recombinant and the natural proteins was investigated with sera of patients with adverse reactions to tomato. IgE-binding to natural Lyc e 2 was completely inhibited by the pineapple stem bromelain glycopeptide MUXF (Man alpha 1-6(Xyl beta 1-2)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-3)GlcNAc). Accordingly, the nonglycosylated recombinant protein isoforms did not bind IgE of tomato allergic patients. Hence, we concluded that the IgE reactivity of the natural protein mainly depends on the glycan structure. The amino acid sequences of both isoforms of the allergen contain four possible N-glycosylation sites. By application of MALDI-TOF mass spectrometry the predominant glycan structure of the natural allergen was identified as MMXF (Man alpha 1-6(Man alpha 1-3)(Xyl beta 1-2)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-3) GlcNAc). Natural Lyc e 2, but not the recombinant protein was able to trigger histamine release from passively sensitized basophils of patients with IgE to carbohydrate determinants, demonstrating that glycan structures can be important for the biological activity of allergens.  相似文献   

16.
Mice exposed to radiation-attenuated cercariae of Schistosoma mansoni are highly resistant to challenge infection, and sera from these mice can confer partial resistance when transferred to naive recipients. These sera recognize Ag present in schistosomular and adult worms, among them an Ag of 200 kDa. A cDNA encoding a 62-kDa portion of this Ag was cloned; the deduced amino acid sequence of this cDNA clone shares homology with myosins of other species. To assess the immunoprophylactic potential, we carried out vaccination trials in mice using the recombinant polypeptide expressed as a fusion protein with beta-galactosidase presented in the form of proteosome complexes with the outer membrane protein of meningococcus. The level of protection achieved was 32%, and this level could be increased to 75% by removal of those amino acids included in the fusion protein that were derived from the vector to yield a polypeptide, designated rIrV-5. A similar level of protection was achieved when mice were immunized with the same dose of rIrV-5 in the form of protein complexes but without outer membrane protein, suggesting that protection did not require the use of adjuvant. However, at least three immunizations were necessary to achieve protection. Using mAb and sera from mice vaccinated with rIrV-5, we demonstrated that the native protein recognized by antibodies against rIrV-5 is a 200-kDa protein that is expressed on the surface of newly transformed schistosomula. The protection achieved with rIrV-5 in mice encourages additional studies of its potential as a vaccine candidate for the prevention of schistosomiasis.  相似文献   

17.

Background

Phlebotomine sand flies are blood-sucking insects transmitting Leishmania parasites. In bitten hosts, sand fly saliva elicits specific immune response and the humoral immunity was shown to reflect the intensity of sand fly exposure. Thus, anti-saliva antibodies were suggested as the potential risk marker of Leishmania transmission. In this study, we examined the long-term kinetics and persistence of anti-Phlebotomus papatasi saliva antibody response in BALB/c and C57BL/6 mice. We also tested the reactivity of mice sera with P. papatasi salivary antigens and with the recombinant proteins.

Methodology/Principal Findings

Sera of BALB/c and C57BL/6 mice experimentally bitten by Phlebotomus papatasi were tested by ELISA for the presence of anti-saliva IgE, IgG and its subclasses. We detected a significant increase of specific IgG and IgG1 in both mice strains and IgG2b in BALB/c mice that positively correlated with the number of blood-fed P. papatasi females. Using western blot and mass spectrometry we identified the major P. papatasi antigens as Yellow-related proteins, D7-related proteins, antigen 5-related proteins and SP-15-like proteins. We therefore tested the reactivity of mice sera with four P. papatasi recombinant proteins coding for most of these potential antigens (PpSP44, PpSP42, PpSP30, and PpSP28). Each mouse serum reacted with at least one of the recombinant protein tested, although none of the recombinant proteins were recognized by all sera.

Conclusions

Our data confirmed the concept of using anti-sand fly saliva antibodies as a marker of sand fly exposure in Phlebotomus papatasi–mice model. As screening of specific antibodies is limited by the availability of salivary gland homogenate, utilization of recombinant proteins in such studies would be beneficial. Our present work demonstrates the feasibility of this implementation. A combination of recombinant salivary proteins is recommended for evaluation of intensity of sand fly exposure in endemic areas and for estimation of risk of Leishmania transmission.  相似文献   

18.
Proteomics and immunological analysis of a novel shrimp allergen,Pen m 2   总被引:14,自引:0,他引:14  
Shellfish are a common cause of adverse food reactions in hypersensitive individuals and shrimp is one of the most frequently reported causes of allergic reactions. A novel allergen from Penaeus monodon, designated Pen m 2, was identified by two-dimensional immunoblotting using sera from subjects with shrimp allergy, followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the peptide digest. This novel allergen was then cloned and the amino acid sequence deduced from the cDNA sequence. The cloned cDNA encoded a 356-aa protein with an acetylated N terminus at Ala2, identified by postsource decay analysis. Comparison of the Pen m 2 sequence with known protein sequences revealed extensive similarity with arginine kinase (EC 2.7.3.3) from crustaceans. Pen m 2 was purified by anion exchange chromatography and shown to have arginine kinase activity and to react with serum IgE from shrimp allergic patients and induce immediate type skin reactions in sensitized patients. Using Pen m 2-specific antisera and polyclonal sera from shrimp-sensitive subjects in a competitive ELISA inhibition assay, Pen m 2 was identified as a novel cross-reactive Crustacea allergen. This novel allergen could be useful in allergy diagnosis and in the treatment of Crustacea-derived allergic disorders.  相似文献   

19.
An S  Chen L  Wei JF  Yang X  Ma D  Xu X  Xu X  He S  Lu J  Lai R 《PloS one》2012,7(2):e31920
Due to poor diagnostic facilities and a lack of medical alertness, allergy to Vespa wasps may be underestimated. Few allergens have been identified from Vespa wasps.Possible native allergen proteins were purified from the wasp venoms (WV) (Vespa magnifica Smith) by gel filtration, ion exchange chromatography, respectively. Their sequences were determined by Edman degradation and cDNA cloning. Their allergenicities were assayed by enzyme-linked immunosorbent assay inhibition tests (ELISA-IT), immunoblots, and skin prick tests (SPTs). Their cross allergencities with Tab y 2 and Tab y 5 purified from the horsefly (Tabanus yao Macquart) were also determined. Two native allergens were identified from the WV, respectively. They are a 25-KDa antigen 5 protein (Ag5) (Vesp ma 5) and a 35-KDa hyaluronidase (Vesp ma 2). They represented major allergens in Vespa magnifica by immunoblots and SPTs. ELISA inhibition of pooled sera IgE reactivity to both the WV and the horsefly salivary gland extracts (HSGE) using four purified allergens (Vesp ma 2, Vesp ma 5 and previously purified Tab y 2 and Tab y 5) was significant. Their cross allergenicities were confirmed by ELISA-IT, immunoblots, and SPTs. They represented the cross reactive allergens from wasp and horsefly and proved the so called wasp-horsefly syndrome.  相似文献   

20.
The dust mite Lepidoglyphus destructor is a common species in Europe and a major cause of dust mite allergy in rural surroundings, but it also contributes to dust mite allergy in urban areas. One major allergen, Lep d 2, has been expressed as a recombinant protein and evaluated both in vivo and in vitro and shown to detect 60% or more of L. destructor-sensitized subjects. Additional recombinant allergens are needed to obtain a reliable diagnostic tool for L. destructor allergy. The aim of this study was to clone and express new allergens from L. destructor and determine their recognition frequency among sensitized individuals. A phage display cDNA expression library was constructed and screened with sera from L. destructor-sensitized individuals. The cDNAs encoding the allergens were cloned into the pET17b vector and subsequently expressed in Escherichia coli as C-terminal His6-tagged proteins. Immunoblotting of the recombinant proteins was performed using sera from 45 subjects allergic to L. destructor. Three new allergens from L. destructor, Ld 5 (originating from a partial Lep d 5 clone), Lep d 7 and Lep d 13, were identified and recognized by 4/45 (9%), 28/45 (62%) and 6/45 (13%) sera from L. destructor-sensitized subjects, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号